Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Facile Synthesis of Hierarchical CuS and CuCo₂S₄ Structures from an Ionic Liquid Precursor for Electrocatalysis Applications

Titelangaben

Abouserie, Ahed ; El-Nagar, Gumaa A. ; Heyne, Benjamin ; Günter, Christina ; Schilde, Uwe ; Mayer, Matthew T. ; Stojkovikj, Sasho ; Roth, Christina ; Taubert, Andreas:
Facile Synthesis of Hierarchical CuS and CuCo₂S₄ Structures from an Ionic Liquid Precursor for Electrocatalysis Applications.
In: ACS Applied Materials & Interfaces. Bd. 12 (2020) Heft 47 . - S. 52560-52570.
ISSN 1944-8252
DOI: https://doi.org/10.1021/acsami.0c13927

Abstract

Covellite-phase CuS and carrollite-phase CuCo2S4 nano- and microstructures were synthesized from tetrachloridometallate-based ionic liquid precursors using a novel, facile, and highly controllable hot-injection synthesis strategy. The synthesis parameters including reaction time and temperature were first optimized to produce CuS with a well-controlled and unique morphology, providing the best electrocatalytic activity toward the oxygen evolution reaction (OER). In an extension to this approach, the electrocatalytic activity was further improved by incorporating Co into the CuS synthesis method to yield CuCo2S4 microflowers. Both routes provide high microflower yields of >80 wt %. The CuCo2S4 microflowers exhibit a superior performance for the OER in alkaline medium compared to CuS. This is demonstrated by a lower onset potential (∼1.45 V vs RHE @10 mA/cm2), better durability, and higher turnover frequencies compared to bare CuS flowers or commercial Pt/C and IrO2 electrodes. Likely, this effect is associated with the presence of Co3+ sites on which a better adsorption of reactive species formed during the OER (e.g., OH, O, OOH, etc.) can be achieved, thus reducing the OER charge-transfer resistance, as indicated by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy measurements.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Werkstoffverfahrenstechnik > Lehrstuhl Werkstoffverfahrenstechnik - Univ.-Prof. Dr. Christina Roth
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Werkstoffverfahrenstechnik
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 22 Apr 2021 07:22
Letzte Änderung: 22 Apr 2021 07:22
URI: https://eref.uni-bayreuth.de/id/eprint/64865