Title data
Gkoutselis, Gerasimos ; Rohrbach, Stephan ; Harjes, Janno ; Obst, Martin ; Brachmann, Andreas ; Horn, Marcus A. ; Rambold, Gerhard:
Microplastics accumulate fungal pathogens in terrestrial ecosystems.
In: Scientific Reports.
Vol. 11
(2021)
.
- 13214.
ISSN 2045-2322
DOI: https://doi.org/10.1038/s41598-021-92405-7
Project information
Project title: |
Project's official title Project's id SFB 1357 Mikroplastik SFB1357 Open Access Publizieren No information |
---|---|
Project financing: |
Deutsche Forschungsgemeinschaft |
Abstract in another language
Microplastic (MP) is a pervasive pollutant in nature that is colonised by diverse groups of microbes, including potentially pathogenic species. Fungi have been largely neglected in this context, despite their affinity for plastics and their impact as pathogens. To unravel the role of MP as a carrier of fungal pathogens in terrestrial ecosystems and the immediate human environment, epiplastic mycobiomes from municipal plastic waste from Kenya were deciphered using ITS metabarcoding as well as a comprehensive meta-analysis, and visualised via scanning electron as well as confocal laser scanning microscopy. Metagenomic and microscopic findings provided complementary evidence that the terrestrial plastisphere is a suitable ecological niche for a variety of fungal organisms, including important animal and plant pathogens, which formed the plastisphere core mycobiome. We show that MPs serve as selective artificial microhabitats that not only attract distinct fungal communities, but also accumulate certain opportunistic human pathogens, such as cryptococcal and Phoma-like species. Therefore, MP must be regarded a persistent reservoir and potential vector for fungal pathogens in soil environments. Given the increasing amount of plastic waste in terrestrial ecosystems worldwide, this interrelation may have severe consequences for the trans-kingdom and multi-organismal epidemiology of fungal infections on a global scale.