Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

AI-based industrial full-service offerings : A model for payment structure selection considering predictive power

Titelangaben

Häckel, Björn ; Karnebogen, Philip ; Ritter, Christian:
AI-based industrial full-service offerings : A model for payment structure selection considering predictive power.
In: Decision Support Systems. Bd. 152 (2022) . - 113653.
ISSN 1873-5797
DOI: https://doi.org/10.1016/j.dss.2021.113653

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Projektgruppe WI Digital Finance
Ohne Angabe
Projektgruppe WI Künstliche Intelligenz
Ohne Angabe

Abstract

Artificial Intelligence and servitization reshape the way that manufacturing companies derive value. Aim-ing to sustain competitive advantage and intensify customer loyalty, full-service providers offer the use of their products as a service to achieve continuous revenues. For this purpose, companies implement AI classification algorithms to enable high levels of service at controllable costs. However, traditional asset sellers who become service providers require previously atypical payment structures, as classic payment methods involving a one-time fee for production costs and profit margins are unsuitable. In addition, a low predictive power of the implemented classification algorithm can lead to misclassifications, which diminish the achievable level of service and the intended net present value of the resultant service. While previous works focus solely on the costs of such misclassifications, our decision model highlights impli-cations for payment structures, service levels, and – ultimately – the net present value of such data-driven service offerings. Our research suggests that predictive power can be a major factor in selecting a suitable payment structure and the overall design of service level agreements. Therefore, we compare common payment structures for data-driven services and investigate their relationship to predictive power. We de-velop our model using a design science methodology and iteratively evaluate our results using a four-step approach that includes interviews with industry experts and the application of our model to a real-world use case. In summary, our research extends the existing knowledge of servitization and data-driven ser-vices in the manufacturing industry through a quantitative decision model.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Artificial Intelligence; Servitization; Predictive Power; Payment Structures; Full-Service Provision
Institutionen der Universität: Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre
Forschungseinrichtungen
Forschungseinrichtungen > Institute in Verbindung mit der Universität
Forschungseinrichtungen > Institute in Verbindung mit der Universität > Institutsteil Wirtschaftsinformatik des Fraunhofer FIT
Forschungseinrichtungen > Institute in Verbindung mit der Universität > FIM Forschungsinstitut für Informationsmanagement
Fakultäten
Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
300 Sozialwissenschaften > 330 Wirtschaft
Eingestellt am: 10 Sep 2021 08:39
Letzte Änderung: 09 Aug 2023 10:47
URI: https://eref.uni-bayreuth.de/id/eprint/66995