Title data
Weigert, Sebastian ; Gagsteiger, Andreas ; Menzel, Teresa ; Höcker, Birte:
A versatile assay platform for enzymatic poly(ethylene-terephthalate) degradation.
In: Protein Engineering, Design & Selection.
Vol. 34
(2021)
.
- pp. 1-9.
ISSN 1741-0134
DOI: https://doi.org/10.1093/protein/gzab022
Project information
Project title: |
Project's official title Project's id SFB 1357 Mikroplastik SFB1357 |
---|---|
Project financing: |
Deutsche Forschungsgemeinschaft |
Abstract in another language
Accumulation of plastic and subsequent microplastic is a major environmental challenge. With the discovery of potent polyethylene terephthalate (PET)-degrading enzymes, a new perspective arose for environmental decomposition as well as technical recycling. To explore the enormous diversity of potential PET-degrading enzymes in nature and also to conveniently employ techniques like protein engineering and directed evolution, a fast and reliable assay platform is needed. In this study we present our versatile solution applying a PET coating on standard lab consumables such as polymerase chain reaction tubes, 96- and 384-well microtiter plates, yielding an adjustable crystallinity of the PET. Combining the reaction vessels with either ultra-high performance liquid chromatography (UHPLC) or fluorometric readout and additional enzyme quantification offers a range of advantages. Thereby, the platform can easily be adapted to diverse needs from detailed analysis with high precision to high-throughput (HT) applications including crude lysate analysis.