Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Kinetic energy transport in Rayleigh-Bénard convection

Titelangaben

Petschel, Klaus ; Stellmach, Stephan ; Wilczek, Michael ; Lülff, Johannes ; Hansen, Ulrich:
Kinetic energy transport in Rayleigh-Bénard convection.
In: Journal of Fluid Mechanics. Bd. 773 (2015) . - S. 395-417.
ISSN 0022-1120
DOI: https://doi.org/10.1017/jfm.2015.216

Abstract

The kinetic energy balance in Rayleigh–Bénard convection is investigated by means of direct numerical simulations for the Prandtl number range 0.01⩽Pr⩽150 and for fixed Rayleigh number Ra=5×106 . The kinetic energy balance is divided into a dissipation, a production and a flux term. We discuss the profiles of all the terms and find that the different contributions to the energy balance can be spatially separated into regions where kinetic energy is produced and where kinetic energy is dissipated. By analysing the Prandtl number dependence of the kinetic energy balance, we show that the height dependence of the mean viscous dissipation is closely related to the flux of kinetic energy. We show that the flux of kinetic energy can be divided into four additive contributions, each representing a different elementary physical process (advection, buoyancy, normal viscous stresses and viscous shear stresses). The behaviour of these individual flux contributions is found to be surprisingly rich and exhibits a pronounced Prandtl number dependence. Different flux contributions dominate the kinetic energy transport at different depths, such that a comprehensive discussion requires a decomposition of the domain into a considerable number of sublayers. On a less detailed level, our results reveal that advective kinetic energy fluxes play a key role in balancing the near-wall dissipation at low Prandtl number, whereas normal viscous stresses are particularly important at high Prandtl number. Finally, our work reveals that classical velocity boundary layers are deeply connected to the kinetic energy transport, but fail to correctly represent regions of enhanced viscous dissipation.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Lehrstuhl Theoretische Physik I > Lehrstuhl für Theoretische Physik I - Univ.-Prof. Dr. Michael Wilczek
Profilfelder > Advanced Fields > Nichtlineare Dynamik
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Lehrstuhl Theoretische Physik I
Profilfelder
Profilfelder > Advanced Fields
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
Eingestellt am: 18 Feb 2022 09:28
Letzte Änderung: 23 Feb 2022 15:57
URI: https://eref.uni-bayreuth.de/id/eprint/67577