Titelangaben
Wilczek, Michael ; Meneveau, Charles:
Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields.
In: Journal of Fluid Mechanics.
Bd. 756
(2014)
.
- S. 191-225.
ISSN 0022-1120
DOI: https://doi.org/10.1017/jfm.2014.367
Abstract
Understanding the non-local pressure contributions and viscous effects on the small-scale statistics remains one of the central challenges in the study of homogeneous isotropic turbulence. Here we address this issue by studying the impact of the pressure Hessian as well as viscous diffusion on the statistics of the velocity gradient tensor in the framework of an exact statistical evolution equation. This evolution equation shares similarities with earlier phenomenological models for the Lagrangian velocity gradient tensor evolution, yet constitutes the starting point for a systematic study of the unclosed pressure Hessian and viscous diffusion terms. Based on the assumption of incompressible Gaussian velocity fields, closed expressions are obtained as the results of an evaluation of the characteristic functionals. The benefits and shortcomings of this Gaussian closure are discussed, and a generalization is proposed based on results from direct numerical simulations. This enhanced Gaussian closure yields, for example, insights on how the pressure Hessian prevents the finite-time singularity induced by the local self-amplification and how its interaction with viscous effects leads to the characteristic strain skewness phenomenon.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Lehrstuhl Theoretische Physik I > Lehrstuhl für Theoretische Physik I - Univ.-Prof. Dr. Michael Wilczek Profilfelder > Advanced Fields > Nichtlineare Dynamik Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Lehrstuhl Theoretische Physik I Profilfelder Profilfelder > Advanced Fields |
Titel an der UBT entstanden: | Nein |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 530 Physik |
Eingestellt am: | 23 Feb 2022 13:40 |
Letzte Änderung: | 23 Feb 2022 13:40 |
URI: | https://eref.uni-bayreuth.de/id/eprint/67590 |