Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Revealing the Landscape of Privacy-Enhancing Technologies in the Context of Data Markets for the Iot : A Systematic Literature Review

Titelangaben

Munilla Garrido, Gonzalo ; Sedlmeir, Johannes ; Uludağ, Ömer ; Soto Alaoui, llias ; Luckow, Andre ; Matthes, Florian:
Revealing the Landscape of Privacy-Enhancing Technologies in the Context of Data Markets for the Iot : A Systematic Literature Review.
In: Journal of Network and Computer Applications. Bd. 207 (2022) . - 103465.
ISSN 1084-8045
DOI: https://doi.org/10.1016/j.jnca.2022.103465

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Projektgruppe WI BLockchain-Labor
Ohne Angabe

Abstract

IoT data markets in public and private institutions have become increasingly relevant in recent years because of their potential to improve data availability and unlock new business models. However, exchanging data in markets bears considerable challenges related to disclosing sensitive information. Despite considerable research focused on different aspects of privacy-enhancing data markets for the IoT, none of the solutions proposed so far seems to find a practical adoption. Thus, this study aims to organize the state-of-the-art solutions, analyze and scope the technologies that have been suggested in this context, and structure the remaining challenges to determine areas where future research is required. To accomplish this goal, we conducted a systematic literature review on privacy enhancement in data markets for the IoT, covering 50 publications dated up to July 2020, and provided updates with 24 publications dated up to May 2022. Our results indicate that most research in this area has emerged only recently, and no IoT data market architecture has established itself as canonical. Existing solutions frequently lack the required combination of anonymization and secure computation technologies. Furthermore, there is no consensus on the appropriate use of blockchain technology for IoT data markets and a low degree of leveraging existing libraries or reusing generic data market architectures. We also identified significant challenges remaining, such as the copy problem and the recursive enforcement problem that – while solutions have been suggested to some extent – are often not sufficiently addressed in proposed designs. We conclude that privacy-enhancing technologies need further improvements to positively impact data markets so that, ultimately, the value of data is preserved through data scarcity and users’ privacy and businesses-critical information are protected.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Anonymization; Big Data; Copy Problem; Data Exchange; Marketplace; Platform; Secure Computation
Institutionen der Universität: Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre
Forschungseinrichtungen
Forschungseinrichtungen > Institute in Verbindung mit der Universität
Forschungseinrichtungen > Institute in Verbindung mit der Universität > Institutsteil Wirtschaftsinformatik des Fraunhofer FIT
Forschungseinrichtungen > Institute in Verbindung mit der Universität > FIM Forschungsinstitut für Informationsmanagement
Fakultäten
Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
300 Sozialwissenschaften > 330 Wirtschaft
Eingestellt am: 09 Aug 2022 06:34
Letzte Änderung: 03 Mai 2024 09:19
URI: https://eref.uni-bayreuth.de/id/eprint/71432