Title data
Matsumori, Kishin ; Fujimura, Ryushi ; Retsch, Markus:
Reflection Mechanism of Dielectric Corner Reflectors : The Role of the Diffraction of Evanescent Waves and the Goos–Hänchen Shift.
In: ACS Omega.
Vol. 7
(2022)
Issue 27
.
- pp. 23353-23361.
ISSN 2470-1343
DOI: https://doi.org/10.1021/acsomega.2c01537
Project information
Project financing: |
ERC VISIRday, 714968 |
---|
Abstract in another language
Nano- and microstructures have been developed for asymmetric light transmission (ALT) filters operating in a wide wavelength range. One of the most straightforward structures with ALT properties is a dielectric corner reflector (DCR) comprising a one-dimensional grating of a triangular shape on one surface. The DCR possesses strong reflection only for one-way light illumination due to multiple total internal reflections (TIRs) inside the triangular grating. For triangular structures being much larger than the wavelength of light, the reflection properties are expected to be fully described by geometrical optics. However, geometrical optics do not account for the Goos–Hänchen (GH) shift, which is caused by the evanescent wave of the TIR. In this work, the reflection mechanism of DCRs is elucidated using the finite element method and a quantitative model built by considering the GH shift. The reduction in reflection of the DCR is dominated by diffraction of the evanescent wave at the corner of the triangular structure. Our model is based on simple mathematics and can optimize the DCR geometry for applications addressing a wide wavelength range such as radiative cooling.