Titelangaben
Langer, Markus ; Baum, Kevin ; Hartmann, Kathrin ; Hessel, Stefan ; Speith, Timo ; Wahl, Jonas:
Explainability Auditing for Intelligent Systems : A Rationale for Multi-Disciplinary Perspectives.
In: Yue, Tao ; Mirakhorli, Mehdi
(Hrsg.):
2021 IEEE 29th International Requirements Engineering Conference Workshops (REW). -
Piscataway, NJ, USA
: IEEE
,
2021
. - S. 164-168
ISBN 978-1-6654-1898-0
DOI: https://doi.org/10.1109/REW53955.2021.00030
Angaben zu Projekten
Projektfinanzierung: |
Deutsche Forschungsgemeinschaft VolkswagenStiftung |
---|
Abstract
National and international guidelines for trustworthy artificial intelligence (AI) consider explainability to be a central facet of trustworthy systems. This paper outlines a multi-disciplinary rationale for explainability auditing. Specifically, we propose that explainability auditing can ensure the quality of explainability of systems in applied contexts and can be the basis for certification as a means to communicate whether systems meet certain explainability standards and requirements. Moreover, we emphasize that explainability auditing needs to take a multi-disciplinary perspective, and we provide an overview of four perspectives (technical, psychological, ethical, legal) and their respective benefits with respect to explainability auditing.
Weitere Angaben
Publikationsform: | Aufsatz in einem Buch |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | Auditing; Certification; Explainability; Explainable Artificial Intelligence; Requirements; Trustworthy AI |
Institutionen der Universität: | Fakultäten > Kulturwissenschaftliche Fakultät > Institut für Philosophie Fakultäten Fakultäten > Kulturwissenschaftliche Fakultät |
Titel an der UBT entstanden: | Nein |
Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik 100 Philosophie und Psychologie > 100 Philosophie |
Eingestellt am: | 27 Feb 2023 09:06 |
Letzte Änderung: | 28 Feb 2023 06:25 |
URI: | https://eref.uni-bayreuth.de/id/eprint/73037 |