Titelangaben
Pereira, Ana Rita ; Lipphaus, Andreas ; Ergin, Mert ; Salehi, Sahar ; Gehweiler, Dominic ; Rudert, Maximilian ; Hansmann, Jan ; Herrmann, Marietta:
Modeling of the Human Bone Environment : Mechanical Stimuli Guide Mesenchymal Stem Cell–Extracellular Matrix Interactions.
In: Materials.
Bd. 14
(2021)
Heft 16
.
- 4431.
ISSN 1996-1944
DOI: https://doi.org/10.3390/ma14164431
Abstract
In bone tissue engineering, the design of in vitro models able to recreate both the chemical composition, the structural architecture, and the overall mechanical environment of the native tissue is still often neglected. In this study, we apply a bioreactor system where human bone-marrow hMSCs are seeded in human femoral head-derived decellularized bone scaffolds and subjected to dynamic culture, i.e., shear stress induced by continuous cell culture medium perfusion at 1.7 mL/min flow rate and compressive stress by 10% uniaxial load at 1 Hz for 1 h per day. In silico modeling revealed that continuous medium flow generates a mean shear stress of 8.5 mPa sensed by hMSCs seeded on 3D bone scaffolds. Experimentally, both dynamic conditions improved cell repopulation within the scaffold and boosted ECM production compared with static controls. Early response of hMSCs to mechanical stimuli comprises evident cell shape changes and stronger integrin-mediated adhesion to the matrix. Stress-induced Col6 and SPP1 gene expression suggests an early hMSC commitment towards osteogenic lineage independent of Runx2 signaling. This study provides a foundation for exploring the early effects of external mechanical stimuli on hMSC behavior in a biologically meaningful in vitro environment, opening new opportunities to study bone development, remodeling, and pathologies.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | bone tissue engineering; human trabecular bone decellularization; in vitro modeling; shear stress; compressive load; fluid simulation; cell-matrix interaction; mechanotransduction |
Institutionen der Universität: | Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften |
Eingestellt am: | 09 Mär 2023 10:17 |
Letzte Änderung: | 09 Mär 2023 10:17 |
URI: | https://eref.uni-bayreuth.de/id/eprint/74150 |