Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren

Microplastics persist in an arable soil but do not affect soil microbial biomass, enzyme activities, and crop yield

Title data

Schöpfer, Lion ; Möller, Julia N. ; Steiner, Thomas ; Schnepf, Uwe ; Marhan, Sven ; Resch, Julia ; Bayha, Ansilla ; Löder, Martin G. J. ; Freitag, Ruth ; Brümmer, Franz ; Laforsch, Christian ; Streck, Thilo ; Forberger, Jens ; Kranert, Martin ; Kandeler, Ellen ; Pagel, Holger:
Microplastics persist in an arable soil but do not affect soil microbial biomass, enzyme activities, and crop yield.
In: Journal of Plant Nutrition and Soil Science. Vol. 185 (2022) Issue 6 . - pp. 836-849.
ISSN 1436-8730

Official URL: Volltext

Project information

Project financing: Deutsche Forschungsgemeinschaft
SFB 1357 Microplastics

Abstract in another language

Abstract Background Microplastics (MP, plastic particles <5 mm) are ubiquitous in arable soils due to significant inputs via organic fertilizers, sewage sludges, and plastic mulches. However, knowledge of typical MP loadings, their fate, and ecological impacts on arable soils is limited. Aims We studied (1) MP background concentrations, (2) the fate of added conventional and biodegradable MP, and (3) effects of MP in combination with organic fertilizers on microbial abundance and activity associated with carbon (C) cycling, and crop yields in an arable soil. Methods On a conventionally managed soil (Luvisol, silt loam), we arranged plots in a randomized complete block design with the following MP treatments (none, low-density polyethylene LDPE, a blend of poly(lactic acid) and poly(butylene adipate-co-terephthalate) PLA/PBAT) and organic fertilizers (none, compost, digestate). We added 20 kg MP ha–1 and 10 t organic fertilizers ha–1. We measured concentrations of MP in the soil, microbiological indicators of C cycling (microbial biomass and enzyme activities), and crop yields over 1.5 years. Results Background concentration of MP in the top 10 cm was 296 ± 110 (mean ± standard error) particles <0.5 mm per kg soil, with polypropylene, polystyrene, and polyethylene as the main polymers. Added LDPE and PLA/PBAT particles showed no changes in number and particle size over time. MP did not affect the soil microbiological indicators of C cycling or crop yields. Conclusions Numerous MP occur in arable soils, suggesting diffuse MP entry into soils. In addition to conventional MP, biodegradable MP may persist under field conditions. However, MP at current concentrations are not expected to affect C turnover and crop yield.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Animal Ecology I > Chair Animal Ecology I - Univ.-Prof. Dr. Christian Laforsch
Faculties > Faculty of Engineering Science > Chair Process Biotechnology > Chair Process Biotechnology - Univ.-Prof. Dr. Ruth Freitag
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 570 Life sciences, biology
600 Technology, medicine, applied sciences
600 Technology, medicine, applied sciences > 600 Technology
600 Technology, medicine, applied sciences > 610 Medicine and health
Date Deposited: 27 Mar 2023 06:22
Last Modified: 27 Mar 2023 06:22