Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Polymer informatics with multi-task learning

Titelangaben

Künneth, Christopher ; Rajan, Arunkumar Chitteth ; Tran, Huan ; Chen, Lihua ; Kim, Chiho ; Ramprasad, Rampi:
Polymer informatics with multi-task learning.
In: Patterns. Bd. 2 (2021) Heft 4 . - 100238.
ISSN 2666-3899
DOI: https://doi.org/10.1016/j.patter.2021.100238

Abstract

Modern data-driven tools are transforming application-specific polymer development cycles. Surrogate models that can be trained to predict properties of polymers are becoming commonplace. Nevertheless, these models do not utilize the full breadth of the knowledge available in datasets, which are oftentimes sparse; inherent correlations between different property datasets are disregarded. Here, we demonstrate the potency of multi-task learning approaches that exploit such inherent correlations effectively. Data pertaining to 36 different properties of over 13,000 polymers are supplied to deep-learning multi-task architectures. Compared to conventional single-task learning models, the multi-task approach is accurate, efficient, scalable, and amenable to transfer learning as more data on the same or different properties become available. Moreover, these models are interpretable. Chemical rules, that explain how certain features control trends in property values, emerge from the present work, paving the way for the rational design of application specific polymers meeting desired property or performance objectives.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: polymer informatics; polymer property of prediction; polymer design; multi-task; machine learning; neural network; Gaussian processing; data-driven methods
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Juniorprofessur Computational Materials Science > Juniorprofessur Computational Materials Science - Juniorprof. Dr. Christopher Künneth
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 05 Mai 2023 08:52
Letzte Änderung: 05 Mai 2023 08:52
URI: https://eref.uni-bayreuth.de/id/eprint/76154