Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Neural Network Based Molecular Dynamics to Study Polymers

Titelangaben

Künneth, Christopher ; Ramprasad, Ramamurthy:
Neural Network Based Molecular Dynamics to Study Polymers.
In: Bulletin of the American Physical Society. Bd. 65 (2020) Heft 1 . - P45.00003.
ISSN 0003-0503

Abstract

Polymers are an important class of materials that display morphological complexity and diverse inter-atomic interactions. These two factors have defied large-scale and long-time quantum-accurate atomic-level simulations of polymer dynamics. Traditional simulation methods utilize parameterized classical potentials or force fields which often lack accuracy, transferability, and versatility. Moreover, although these methods are known to fail in notable circumstances, it is not clear how the traditional methods can be systematically improved using the known failures. Neural network based models for molecular dynamics, the subject of this study, are capable of learning from reference quantum mechanical data. Once learned, these models can emulate the parent quantum calculations in accuracy, but be about a billion orders of magnitude faster. Neural network based molecular dynamics simulations can thus reach length-scales and time-scales previously inaccessible using quantum mechanical methods. In this work, we develop a new class of first-ever neural network models for the prototypical case of hydrocarbons and provide several meticulous and diverse validation tests. Challenges that remain are discussed and pathways to overcome such challenges are presented.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Juniorprofessur Computational Materials Science > Juniorprofessur Computational Materials Science - Juniorprof. Dr. Christopher Künneth
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Juniorprofessur Computational Materials Science
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 05 Mai 2023 08:39
Letzte Änderung: 05 Mai 2023 08:39
URI: https://eref.uni-bayreuth.de/id/eprint/76182