Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Thermo-Mechanical Recyclability of Additively Manufactured Polypropylene and Polylactic Acid Parts and Polypropylene Support Structures

Title data

Nagengast, Niko ; Bay, Christian ; Döpper, Frank ; Schmidt, Hans-Werner ; Neuber, Christian:
Thermo-Mechanical Recyclability of Additively Manufactured Polypropylene and Polylactic Acid Parts and Polypropylene Support Structures.
In: Polymers. Vol. 15 (2023) Issue 10 . - 2291.
ISSN 2073-4360
DOI: https://doi.org/10.3390/polym15102291

Abstract in another language

Polymers have a reputation for several advantageous characteristics like chemical resistance, weight reduction, and simple form-giving processes. The rise of additive manufacturing technologies such as Fused Filament Fabrication (FFF) has introduced an even more versatile production process that supported new product design and material concepts. This led to new investigations and innovations driven by the individualization of customized products. The other side of the coin contains an increasing resource and energy consumption satisfying the growing demand for polymer products. This turns into a magnitude of waste accumulation and increased resource consumption. Therefore, appropriate product and material design, taking into account end-of-life scenarios, is essential to limit or even close the loop of economically driven product systems. In this paper, a comparison of virgin and recycled biodegradable (polylactic acid (PLA)) and petroleum-based (polypropylene (PP) & support) filaments for extrusion-based Additive Manufacturing is presented. For the first time, the thermo-mechanical recycling setup contained a service-life simulation, shredding, and extrusion. Specimens and complex geometries with support materials were manufactured with both, virgin and recycled materials. An empirical assessment was executed through mechanical (ISO 527), rheological (ISO 1133), morphological, and dimensional testing. Furthermore, the surface properties of the PLA and PP printed parts were analyzed. In summary, PP parts and parts from its support structure showed, in consideration of all parameters, suitable recyclability with a marginal parameter variance in comparison to the virgin material. The PLA components showed an acceptable decline in the mechanical values but through thermo-mechanical degradation processes, rheological and dimensional properties of the filament dropped decently. This results in significantly identifiable artifacts of the product optics, based on an increase in surface roughness.

Further data

Item Type: Article in a journal
Refereed: Yes
Keywords: thermo-mechanical recycling; additive manufacturing; polymer characterization; Fused Filament Fabrication (FFF); extrusion-based 3D printing
Institutions of the University: Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry I > Chair Macromolecular Chemistry I - Univ.-Prof. Dr. Hans-Werner Schmidt
Faculties > Faculty of Engineering Science
Faculties > Faculty of Engineering Science > Chair Manufacturing and Remanufacturing Technology
Faculties > Faculty of Engineering Science > Chair Manufacturing and Remanufacturing Technology > Chair Manufacturing and Remanufacturing Technology - Univ.-Prof. Dr.-Ing. Frank Döpper
Faculties > Faculty of Engineering Science > Chair Biomechanics
Research Institutions > Research Units > Forschungsstelle für Additive Innovationen - Campus Additive.Innovationen (CA.I)
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 540 Chemistry
600 Technology, medicine, applied sciences
600 Technology, medicine, applied sciences > 600 Technology
600 Technology, medicine, applied sciences > 670 Manufacturing
600 Technology, medicine, applied sciences > 680 Manufacture for specific uses
Date Deposited: 15 May 2023 08:18
Last Modified: 15 May 2023 08:18
URI: https://eref.uni-bayreuth.de/id/eprint/76427