Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Surface immobilization of viruses and nanoparticles elucidates early events in clathrin-mediated endocytosis

Titelangaben

Fratini, Marta ; Wiegand, Tina ; Funaya, Charlotta ; Jiang, Zhongxiang ; Shah, Pranav N. M. ; Spatz, Joachim P. ; Cavalcanti-Adam, Elisabetta Ada ; Boulant, Steeve:
Surface immobilization of viruses and nanoparticles elucidates early events in clathrin-mediated endocytosis.
In: ACS Infectious Diseases. Bd. 4 (2018) Heft 11 . - S. 1585-1600.
ISSN 2373-8227
DOI: https://doi.org/10.1021/acsinfecdis.8b00134

Abstract

Clathrin-mediated endocytosis (CME) is an important entry pathway for viruses. Here, we applied click chemistry to covalently immobilize reovirus on surfaces to study CME during early host–pathogen interactions. To uncouple chemical and physical properties of viruses and determine their impact on CME initiation, we used the same strategy to covalently immobilize nanoparticles of different sizes. Using fluorescence live microscopy and electron microscopy, we confirmed that clathrin recruitment depends on particle size and discovered that the maturation into clathrin-coated vesicles (CCVs) is independent from cargo internalization. Surprisingly, we found that the final size of CCVs appears to be imprinted on the clathrin coat at early stages of cargo–cell interactions. Our approach has allowed us to unravel novel aspects of early interactions between viruses and the clathrin machinery that influence late stages of CME and CCVs formation. This method can be easily and broadly applied to the field of nanotechnology, endocytosis, and virology.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: viruses; nanoparticles; endocytosis; clathrin-mediated endocytosis; membrane curvature; click chemistry
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Zelluläre Biomechanik > Lehrstuhl Zelluläre Biomechanik - Univ.-Prof. Dr. Dr. Elisabetta Ada Cavalcanti-Adam
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 07 Jun 2023 13:11
Letzte Änderung: 07 Jun 2023 13:11
URI: https://eref.uni-bayreuth.de/id/eprint/81204