Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren

Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces

Title data

Horinek, Dominik ; Serr, A. ; Geisler, Markus ; Pirzer, Tobias ; Slotta, Ute ; Lud, Simon Q. ; Garrido, Jose A. ; Scheibel, Thomas ; Hugel, Thorsten ; Netz, Roland R.:
Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces.
In: Proceedings of the National Academy of Sciences of the United States of America. Vol. 105 (2008) Issue 8 . - pp. 2842-2847.
ISSN 1091-6490

Official URL: Volltext

Abstract in another language

The hydrophobic effect, i.e., the poor solvation of nonpolar parts of molecules, plays a key role in protein folding and more generally for molecular self-assembly and aggregation in aqueous media. The perturbation of the water structure accounts for many aspects of protein hydrophobicity. However, to what extent the dispersion interaction between molecular entities themselves contributes has remained unclear. This is so because in peptide folding interactions and structural changes occur on all length scales and make disentangling various contributions impossible. We address this issue both experimentally and theoretically by looking at the force necessary to peel a mildly hydrophobic single peptide molecule from a flat hydrophobic diamond surface in the presence of water. This setup avoids problems caused by bubble adsorption, cavitation, and slow equilibration that complicate the much-studied geometry with two macroscopic surfaces. Using atomic-force spectroscopy, we determine the mean desorption force of a single spider-silk peptide chain as F = 58 ± 8 pN, which corresponds to a desorption free energy of ≈5 k B T per amino acid. Our all-atomistic molecular dynamics simulation including explicit water correspondingly yields the desorption force F = 54 ± 15 pN. This observation demonstrates that standard nonpolarizable force fields used in classical simulations are capable of resolving the fine details of the hydrophobic attraction of peptides. The analysis of the involved energetics shows that water-structure effects and dispersive interactions give contributions of comparable magnitude that largely cancel out. It follows that the correct modeling of peptide hydrophobicity must take the intimate coupling of solvation and dispersive effects into account.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: Der Artikel wurde zunächst online veröffentlicht am 20.02.2008
Institutions of the University: Faculties
Faculties > Faculty of Engineering Science
Faculties > Faculty of Engineering Science > Chair Biomaterials > Chair Biomaterials - Univ.-Prof. Dr. Thomas Scheibel
Faculties > Faculty of Engineering Science > Chair Biomaterials
Profile Fields > Advanced Fields > Advanced Materials
Profile Fields > Advanced Fields > Molecular Biosciences
Profile Fields > Advanced Fields > Polymer and Colloid Science
Profile Fields > Emerging Fields > Food and Health Sciences
Profile Fields
Profile Fields > Advanced Fields
Profile Fields > Emerging Fields
Result of work at the UBT: No
DDC Subjects: 600 Technology, medicine, applied sciences > 620 Engineering
Date Deposited: 17 Mar 2015 12:26
Last Modified: 05 Sep 2022 07:38