Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Automated visitor and wildlife monitoring with camera traps and machine learning

Titelangaben

Mitterwallner, Veronika ; Peters, Anne ; Edelhoff, Hendrik ; Mathes, Gregor H. ; Nguyen, Hien ; Peters, Wibke ; Heurich, Marco ; Steinbauer, Manuel:
Automated visitor and wildlife monitoring with camera traps and machine learning.
In: Remote Sensing in Ecology and Conservation. Bd. 10 (2024) Heft 2 . - S. 236-247.
ISSN 2056-3485
DOI: https://doi.org/10.1002/rse2.367

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Integrative evaluations of the effects of recreational use on wildlife as a basis for evidence-based visitor management.
Ohne Angabe
Open Access Publizieren
Ohne Angabe

Projektfinanzierung: Deutsche Forschungsgemeinschaft
Bayerisches Staatsministerium für Umwelt und Verbraucherschutz

Abstract

As human activities in natural areas increase, understanding human–wildlife interactions is crucial. Big data approaches, like large-scale camera trap studies, are becoming more relevant for studying these interactions. In addition, open-source object detection models are rapidly improving and have great potential to enhance the image processing of camera trap data from human and wildlife activities. In this study, we evaluate the performance of the open-source object detection model MegaDetector in cross-regional monitoring using camera traps. The performance at detecting and counting humans, animals and vehicles is evaluated by comparing the detection results with manual classifications of more than 300 000 camera trap images from three study regions. Moreover, we investigate structural patterns of misclassification and evaluate the results of the detection model for typical temporal analyses conducted in ecological research. Overall, the accuracy of the detection model was very high with 96.0% accuracy for animals, 93.8% for persons and 99.3% for vehicles. Results reveal systematic patterns in misclassifications that can be automatically identified and removed. In addition, we show that the detection model can be readily used to count people and animals on images with underestimating persons by −0.05, vehicles by −0.01 and animals by −0.01 counts per image. Most importantly, the temporal pattern in a long-term time series of manually classified human and wildlife activities was highly correlated with classification results of the detection model (Pearson's r = 0.996, p < 0.001) and diurnal kernel densities of activities were almost equivalent for manual and automated classification. The results thus prove the overall applicability of the detection model in the image classification process of cross-regional camera trap studies without further manual intervention. Besides the great acceleration in processing speed, the model is also suitable for long-term monitoring and allows reproducibility in scientific studies while complying with privacy regulations.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: camera traps; human–wildlife interactions; machine learning; recreation ecology; wildlifeecology
Institutionen der Universität: Fakultäten > Kulturwissenschaftliche Fakultät > Institut für Sportwissenschaft > Professur Sportökologie
Fakultäten > Kulturwissenschaftliche Fakultät > Institut für Sportwissenschaft > Professur Sportökologie > Professur Sportökologie - Univ.-Prof. Dr. Manuel Jonas Steinbauer
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayreuther Zentrum für Ökologie und Umweltforschung - BayCEER
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayreuther Zentrum für Sportwissenschaft (BaySpo)
Fakultäten
Fakultäten > Kulturwissenschaftliche Fakultät
Fakultäten > Kulturwissenschaftliche Fakultät > Institut für Sportwissenschaft
Forschungseinrichtungen
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
Eingestellt am: 05 Sep 2023 05:23
Letzte Änderung: 12 Sep 2024 12:06
URI: https://eref.uni-bayreuth.de/id/eprint/86738