Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Global analysis of kinetics reveals the role of secondary nucleation in recombinant spider silk self-assembly

Titelangaben

Hovanová, Veronika ; Hovan, Andrej ; Žoldák, Gabriel ; Sedlák, Erik ; Humenik, Martin:
Global analysis of kinetics reveals the role of secondary nucleation in recombinant spider silk self-assembly.
In: Protein Science. Bd. 32 (2023) Heft 8 . - e4722.
ISSN 1469-896X
DOI: https://doi.org/10.1002/pro.4722

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projektfinanzierung: Deutscher Akademischer Austauschdienst

Abstract

Abstract Recombinant spider silk proteins can be prepared in scalable fermentation processes and have been proven as sources of biomaterials for biomedical and technical applications. Nanofibrils, formed through the self-assembly of these proteins, possess unique structural and mechanical properties, serving as fundamental building blocks for the fabrication of micro- and nanostructured scaffolds. Despite significant progress in utilizing nanofibrils-based morphologies of recombinant spider silk proteins, a comprehensive understanding of the molecular mechanisms of nanofibrils self-assembly remains a challenge. Here, a detailed kinetic study of nanofibril formation from a recombinant spider silk protein eADF4(C16) in dependence on the protein concentration, seeding, and temperature is provided. For the global fitting of kinetic data obtained during the fibril formation, we utilized the online platform AmyloFit. Evaluation of the data revealed that the self-assembly mechanism of recombinant spider silk is dominated by secondary nucleation. Thermodynamic analyses show that both primary and secondary nucleations, as well as the elongation step of the eADF4(C16), are endothermic processes.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: fibrils; recombinant protein; secondary nucleation; self-assembly; spider silk
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien > Lehrstuhl Biomaterialien - Univ.-Prof. Dr. Thomas Scheibel
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 14 Okt 2023 21:14
Letzte Änderung: 16 Okt 2023 06:17
URI: https://eref.uni-bayreuth.de/id/eprint/87208