Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Classification of sand-binder mixtures from the foundry industry using electrical impedance spectroscopy and support vector machines

Titelangaben

Bifano, Luca ; Ma, Xiaohu ; Fischerauer, Gerhard:
Classification of sand-binder mixtures from the foundry industry using electrical impedance spectroscopy and support vector machines.
In: Sensors. Bd. 24 (2024) Heft 6 . - 2013.
ISSN 1424-8220
DOI: https://doi.org/10.3390/s24062013

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Open Access Publizieren
Ohne Angabe

Projektfinanzierung: Bundesministerium für Wirtschaft und Technologie

Abstract

Molding sand mixtures used in the foundry industry consist of various sands (quartz sands, chromite sands, etc.) and additives such as bentonite. The optimum control of the processes involved in using the mixtures and in their regeneration after the casting requires an efficient in-line monitoring method that is not available today. We are investigating whether such a method can be based on electrical impedance spectroscopy (EIS). To establish a data base, we have characterized various sand mixtures by EIS in the frequency range from 0.5 kHz to 1 MHz under laboratory conditions. Attempts at classifying the different molding sand mixtures by support vector machines (SVM) show encouraging results. Already high assignment accuracies (above 90 %) could even be improved with suitable feature selection (sequential feature selection). At the same time, the standard uncertainty of the SVM results is low, i.e., data assigned to a class by the presented SVMs have a high probability of being assigned correctly. The application of EIS with subsequent evaluation by machine learning (machine-learning-enhanced EIS, MLEIS) in the field of bulk material monitoring in the foundry industry appears possible.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Zusätzliche Informationen: Data publicly available under the DOI 10.15495/do_ubt_2059
Keywords: Electrical impedance spectroscopy (EIS); machine learning; support vector machines (SVM); feature analysis; classification; foundry; molding materials; sand
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Mess- und Regeltechnik > Lehrstuhl Mess- und Regeltechnik - Univ.-Prof. Dr.-Ing. Gerhard Fischerauer
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Mess- und Regeltechnik
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 26 Mär 2024 08:39
Letzte Änderung: 26 Mär 2024 08:39
URI: https://eref.uni-bayreuth.de/id/eprint/88924