Titelangaben
Carta, Alberto ; Wittmann, Bernd ; Kreger, Klaus ; Schmidt, Hans-Werner ; Jansen, Thomas L. C. ; Hildner, Richard:
Spatial Correlations Drive Long-Range Transport and Trapping of Excitons in Single H-Aggregates : Experiment and Theory.
In: The Journal of Physical Chemistry Letters.
Bd. 15
(2024)
Heft 10
.
- S. 2697-2707.
ISSN 1948-7185
DOI: https://doi.org/10.1021/acs.jpclett.3c03586
Angaben zu Projekten
Projektfinanzierung: |
Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst Solar Technologies Go Hybrid |
---|
Abstract
Describing long-range energy transport is a crucial step, both toward deepening our knowledge on natural light-harvesting systems and toward developing novel photoactive materials. Here, we combine experiment and theory to resolve and reproduce energy transport on pico- to nanosecond time scales in single H-type supramolecular nanofibers based on carbonyl-bridged triarylamines (CBT). Each nanofiber shows energy transport dynamics over long distances up to ∼1 μm, despite exciton trapping at specific positions along the nanofibers. Using a minimal Frenkel exciton model including disorder, we demonstrate that spatial correlations in the normally distributed site energies are crucial to reproduce the experimental data. In particular, we can observe the long-range and subdiffusive nature of the exciton dynamics as well as the trapping behavior of excitons in specific locations of the nanofiber. This trapping behavior introduces a net directionality or asymmetry in the exciton dynamics as observed experimentally. Describing long-range energy transport is a crucial step, both toward deepening our knowledge on natural light-harvesting systems and toward developing novel photoactive materials. Here, we combine experiment and theory to resolve and reproduce energy transport on pico- to nanosecond time scales in single H-type supramolecular nanofibers based on carbonyl-bridged triarylamines (CBT). Each nanofiber shows energy transport dynamics over long distances up to ∼1 μm, despite exciton trapping at specific positions along the nanofibers. Using a minimal Frenkel exciton model including disorder, we demonstrate that spatial correlations in the normally distributed site energies are crucial to reproduce the experimental data. In particular, we can observe the long-range and subdiffusive nature of the exciton dynamics as well as the trapping behavior of excitons in specific locations of the nanofiber. This trapping behavior introduces a net directionality or asymmetry in the exciton dynamics as observed experimentally.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Institutionen der Universität: | Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Ehemalige ProfessorInnen > Lehrstuhl Makromolekulare Chemie I - Univ.-Prof. Dr. Hans-Werner Schmidt Profilfelder > Advanced Fields > Polymer- und Kolloidforschung |
Titel an der UBT entstanden: | Nein |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften 500 Naturwissenschaften und Mathematik > 530 Physik 500 Naturwissenschaften und Mathematik > 540 Chemie |
Eingestellt am: | 10 Jun 2024 07:54 |
Letzte Änderung: | 10 Jun 2024 07:55 |
URI: | https://eref.uni-bayreuth.de/id/eprint/89693 |