Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Achieving a high-performance sodium-ion pouch cell by regulating intergrowth structures in a layered oxide cathode with anionic redox

Titelangaben

Wang, Xiaotong ; Zhang, Qinghua ; Zhao, Chen ; Li, Haifeng ; Zhang, Baodan ; Zeng, Guifan ; Tang, Yonglin ; Huang, Zhongyuan ; Hwang, Inhui ; Zhang, Haitang ; Zhou, Shiyuan ; Qiu, Yongfu ; Xiao, Yinguo ; Cabana, Jordi ; Sun, Cheng-Jun ; Amine, Khalil ; Sun, Yang ; Wang, Qingsong ; Xu, Gui-Liang ; Gu, Lin ; Qiao, Yu ; Sun, Shi-Gang:
Achieving a high-performance sodium-ion pouch cell by regulating intergrowth structures in a layered oxide cathode with anionic redox.
In: Nature Energy. Bd. 9 (2024) Heft 2 . - S. 184-196.
ISSN 2058-7546
DOI: https://doi.org/10.1038/s41560-023-01425-2

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

In P2-type layered transition metal (TM) oxides, which are typical cathode materials for Na-ion batteries, the presence of Li within the TM layer could lead to the formation of specific Na–O–Li configurations that trigger additional oxygen redox at high charging voltages. However, the prismatic-type (P-type) to octahedral-type (O-type) phase transition and irreversible TM migration could be simultaneously aggravated in high state of charge, resulting in structural distortion. Here we demonstrate that excessive desodiation of P2-Na0.67Li0.1Fe0.37Mn0.53O2 (NLFMO) induces the formation of neighbouring O-type stacking faults with an intergrowth structure (that is, interlacing of O- and P-type layers), which leads to out-of-lattice Li migration and irreversible oxygen loss. We show that, by controlling the depth of charge to tailor the intergrowth structure, a P-type stacking state can be uniformly interspersed between the O-type stacking state, thereby avoiding neighbouring O-type stacking faults. Adjusting the O/P intergrowth structure leads to both reversible migration of Li/TM ions and reversible anionic redox in the NLFMO cathode. We thereby achieve a high-performance pouch cell (with an energy density of 165 W h kg−1 based on the entire weight of the cell) with both cationic and anionic redox activities.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Anorganische Aktivmaterialien für elektrochemische Energiespeicher
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayerisches Zentrum für Batterietechnik - BayBatt
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 18 Jun 2024 08:37
Letzte Änderung: 18 Jun 2024 08:37
URI: https://eref.uni-bayreuth.de/id/eprint/89780