Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Navigating the Synthetic Realm: Harnessing Diffusion-Based Models for Laparoscopic Text-to-Image Generation

Titelangaben

Allmendinger, Simeon ; Hemmer, Patrick ; Queisner, Moritz ; Sauer, Igor ; Müller, Leopold ; Jakubik, Johannes ; Vössing, Michael ; Kühl, Niklas:
Navigating the Synthetic Realm: Harnessing Diffusion-Based Models for Laparoscopic Text-to-Image Generation.
In: Shaban-Nejad, Arash ; Michalowski, Martin ; Bianco, Simone (Hrsg.): AI for Health Equity and Fairness : Leveraging AI to Address Social Determinants of Health. - Cham : Springer , 2024 . - S. 31-46
ISBN 978-3-031-63592-2
DOI: https://doi.org/10.1007/978-3-031-63592-2_4

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projektfinanzierung: 7. Forschungsrahmenprogramm für Forschung, technologische Entwicklung und Demonstration der Europäischen Union

Abstract

Recent advances in synthetic imaging open up opportunities for obtaining additional data in the field of surgical imaging. This data can provide reliable supplements supporting surgical applications and decision-making through computer vision. Particularly the field of image-guided surgery, such as laparoscopic and robotic-assisted surgery, benefits strongly from synthetic image datasets and virtual surgical training methods. Our study presents an intuitive approach for generating synthetic laparoscopic images from short text prompts using diffusion-based generative models. We demonstrate the usage of state-of-the-art text-to-image architectures in the context of laparoscopic imaging with regard to the surgical removal of the gallbladder. Results on fidelity and diversity demonstrate that diffusion-based models can acquire knowledge about the style and semantics of image-guided surgery. A validation study with a human assessment survey underlines the realistic nature of our synthetic data, as medical personnel detects actual images in a pool with generated images causing a false-positive rate of 66%. In addition, the investigation of a state-of-the-art machine learning model to recognize surgical actions indicates enhanced results when trained with additional generated images of up to 5.20%. Overall, the achieved image quality contributes to the usage of computer-generated images in surgical applications and enhances its path to maturity.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Zusätzliche Informationen: ORCID ID Simeon Allmendinger: 0009-0005-8741-7734
Keywords: Generative AI; Laparoscopic surgery; Diffusion models
Institutionen der Universität: Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre > Lehrstuhl Wirtschaftsinformatik und humanzentrische Künstliche Intelligenz > Lehrstuhl Wirtschaftsinformatik und humanzentrische Künstliche Intelligenz - Univ.-Prof. Dr.-Ing. Niklas Kühl
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit
Eingestellt am: 28 Aug 2024 06:00
Letzte Änderung: 28 Aug 2024 07:24
URI: https://eref.uni-bayreuth.de/id/eprint/90280