Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Large Scale Atomistic and Quantum Mechanical Study of Na⁺ Ion Transport in Liquid Electrolytes for Batteries

Titelangaben

Giri, Amal Kanta ; Oberhofer, Harald:
Large Scale Atomistic and Quantum Mechanical Study of Na⁺ Ion Transport in Liquid Electrolytes for Batteries.
In: Journal of Molecular Liquids. (2024) . - 125920.
ISSN 1873-3166
DOI: https://doi.org/10.1016/j.molliq.2024.125920

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projektfinanzierung: Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Deutsche Forschungsgemeinschaft

Abstract

Lithium–ion batteries (LIBs) have long dominated energy storage markets due to their high energy density and reliability. However, concerns over lithium scarcity and geographic distribution necessitate alternatives. Sodium-ion batteries (SIBs) offer a promising solution due to sodium's abundance, cost-effectiveness, and favorable electrochemical properties. This study investigates Na+ ion transport, aggregation, and performance in various organic electrolytes using molecular dynamics (MD) simulations and density functional theory (DFT) calculations. The electrolytes studied include ethylene carbonate (EC), propylene carbonate (PC), dimethoxyethane (DME), and dimethyl carbonate (DMC) at 320 K. We focused on conductivity, diffusivity, and survival probability of Na+ ions at different salt concentrations. Furthermore, the solvation structure and the binding energy of ions in the electrolytes are thoroughly analyzed. Key findings reveal that at 2 M salt concentration, Na+ ion diffusivity and ionic conductivity follow the order EC>PC>DME>DMC. Increasing salt concentration decreases self–diffusion coefficients of Na+ and PF6− ions across all electrolytes, affecting conductivity. EC shows the highest ionic conductivity at both 1 M and 2 M salt concentrations. These insights suggest that a 2 M NaPF6 concentration in EC optimizes ionic conductivity, making it ideal for high–performance SIBs. This study provides crucial understanding for optimizing electrolytes in SIBs, advancing their development for scalable energy storage solutions.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: MD simulation; DFT; Battery materials; Na ion; Electrolytes; sodium-ion batteries
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Lehrstuhl für Theoretische Physik VII - Computational Materials Design (BayBatt)
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Lehrstuhl für Theoretische Physik VII - Computational Materials Design (BayBatt) > Lehrstuhl für Theoretische Physik VII - Computational Materials Design (BayBatt) - Univ.-Prof. Dr. Harald Oberhofer
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayerisches Zentrum für Batterietechnik - BayBatt
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 09 Sep 2024 05:48
Letzte Änderung: 09 Sep 2024 05:48
URI: https://eref.uni-bayreuth.de/id/eprint/90356