Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Spring Water pH in Forest Catchments Is Modified through Fluctuating Discharge under Climate Change

Title data

Beierkuhnlein, Carl ; Djordjevic, Bojan ; Höger, Johannes ; Wilkens, Vincent ; Shrestha, Samip Narayan ; Smith, Timothy ; Weiser, Frank:
Spring Water pH in Forest Catchments Is Modified through Fluctuating Discharge under Climate Change.
In: Hydrobiology. Vol. 3 (2024) Issue 4 . - pp. 325-336.
ISSN 2673-9917
DOI: https://doi.org/10.3390/hydrobiology3040020

Official URL: Volltext

Project information

Project financing: Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
AquaKlif

Abstract in another language

Over the course of industrialization in the 20th century, vast emissions of air pollutants have occurred. The exhaust gasses contain sulfur and nitrogen oxides, which are converted to sulfuric acid and nitric acid in the atmosphere. This causes acid rain to enter aquatic and terrestrial ecosystems, the most serious consequence of which is large-scale forest dieback across Europe and North America. However, through various political measures, the exhaust gasses have been reduced and, thus, acid rain and forest dieback were stopped. Nevertheless, the lingering effects of this pollution are still present today and are reflected in hydrochemistry. More recently, fluctuating precipitation regimes are causing additional stress to ecosystems in Central Europe. Climatic extremes are becoming more pronounced with climate change. Substantial differences between drought years and years with regular precipitation are directly altering the discharge of springs. Now, two overlapping and interacting syndromes of environmental pressures can be studied in these small catchments at a landscape scale: (1) acidification and (2) climate change. In this long-term study, the waters of 102 forest springs, located in two neighboring forest landscapes in north-eastern Bavaria, Germany (Frankenwald and Fichtelgebirge), were investigated over 24 years (1996 to 2020). By linking changes in pH values with changes in precipitation and spring discharge, we found that pH increases with decreasing discharge and decreasing precipitation. This effect was strongest in the Frankenwald compared to the Fichtelgebirge. We hypothesize that this temporal pattern reflects the longer residence time and, in consequence, the increased buffering of acidic interflow in small catchments during periods of drought. However, this should not be misinterpreted as rapid recovery from acidification because this effect fades in times of enhanced precipitation. We recommend that fluctuations in weather regimes be considered when investigating biogeochemical patterns throughout forest landscapes.

Further data

Item Type: Article in a journal
Refereed: Yes
Keywords: acid rain; drought; helocrene springs; catchment acidification; climate change; Frankenwald; Fichtelgebirge
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Biogeography
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Biogeography > Chair Biogeography - Univ.-Prof. Dr. Carl Beierkuhnlein
Research Institutions > Central research institutes > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Research Institutions
Research Institutions > Central research institutes
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 550 Earth sciences, geology
500 Science > 570 Life sciences, biology
500 Science > 580 Plants (Botany)
Date Deposited: 15 Oct 2024 06:41
Last Modified: 28 Oct 2024 11:18
URI: https://eref.uni-bayreuth.de/id/eprint/90685