Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Decompression and Fracturing Caused by Magmatically Induced Thermal Stresses

Titelangaben

Kiss, D. ; Moulas, E. ; Kaus, B. J. P. ; Spang, Arne:
Decompression and Fracturing Caused by Magmatically Induced Thermal Stresses.
In: Journal of Geophysical Research: Solid Earth. Bd. 128 (2023) Heft 3 . - e2022JB025341.
ISSN 2169-9356
DOI: https://doi.org/10.1029/2022JB025341

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Abstract Studies of host rock deformation around magmatic intrusions usually focus on the development of stresses directly related to the intrusion process. This is done either by considering an inflating region that represents the intruding body, or by considering multiphase deformation. Thermal processes, especially volume changes caused by thermal expansion are typically ignored. We show that thermal stresses around upper crustal magma bodies are likely to be significant and sufficient to create an extensive fracture network around the magma body by brittle yielding. At the same time, cooling induces decompression within the intrusion, which can promote the appearance of a volatile phase. Volatile phases and the development of a fracture network around the inclusion may thus be the processes that control magmatic-hydrothermal alteration around intrusions. This suggests that thermal stresses likely play an important role in the development of magmatic systems. To quantify the magnitude of thermal stresses around cooling intrusions, we present a fully compressible 2D visco-elasto-plastic thermo-mechanical numerical model. We utilize a finite difference staggered grid discretization and a graphics processing unit based pseudo-transient solver. First, we present purely thermo-elastic solutions, then we include the effects of viscous relaxation and plastic yielding. The dominant deformation mechanism in our models is determined in a self-consistent manner, by taking into account stress, pressure, and temperature conditions. Using experimentally determined flow laws, the resulting thermal stresses can be comparable to or even exceed the confining pressure. This suggests that thermal stresses alone could result in the development of a fracture network around magmatic bodies.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Zusätzliche Informationen: e2022JB025341
Institutionen der Universität: Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayerisches Forschungsinstitut für Experimentelle Geochemie und Geophysik - BGI
Forschungseinrichtungen
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie
Eingestellt am: 16 Okt 2024 07:48
Letzte Änderung: 17 Okt 2024 06:31
URI: https://eref.uni-bayreuth.de/id/eprint/90701