Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

LiF@PFSA-Based Composite Membranes for PEM Fuel Cells at Intermediate Temperature Conditions

Titelangaben

Kutter, Maximilian ; Hilgert, Annika ; Maier, Maximilian ; Schilling, Monja ; Greve, Christopher ; Loukrakpam, Rameshwori ; Hagemeier, Wiebke ; Rosin, Andreas ; Muggli, Mark ; Herzig, Eva M. ; Zeis, Roswitha ; Böhm, Thomas ; Gerdes, Thorsten ; Roth, Christina:
LiF@PFSA-Based Composite Membranes for PEM Fuel Cells at Intermediate Temperature Conditions.
In: ACS Applied Polymer Materials. (2025) .
ISSN 2637-6105
DOI: https://doi.org/10.1021/acsapm.4c02540

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
HyRunCell
Ohne Angabe
CRC 1585 "MultiTrans" - Project B03 & C02
492723217
solar technologies go hybrid
Ohne Angabe

Projektfinanzierung: Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Deutsche Forschungsgemeinschaft
Andere
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie
Fonds der Chemischen Industrie

Abstract

Polymer electrolyte membrane fuel cells (PEMFCs) operating at temperatures above 100 °C offer an interesting opportunity for heavy-duty applications. Especially for intermediate operating temperatures between 110 and 130 °C (IT-PEMFC), faster reaction kinetics, higher tolerance to fuel impurities, and water flooding as well as improved heat management of the fuel cell system have been observed. Perfluorosulfonic acid-based membranes (PFSAs) can be modified by incorporating additives or (nano)particle filler systems to improve their thermal and mechanical stability, proton conductivity, and long-term performance at these increased temperatures. Here, we investigate the effect of lithium fluoride particles embedded in PFSA membranes on their water retention behavior as well as on membrane durability in single-cell tests at elevated PEMFC operating temperatures of up to 120 °C. The lithium fluoride nanoparticle-modified membrane shows increased cell performance under both standard and intermediate temperature conditions. The observed performance boost can be explained by an increased mechanical stability at elevated temperatures of the membrane, due to stabilizing hydrophobic and hydrophilic domains, and an increased water uptake and storage capability, especially at low humidity levels during full cell operation. We propose that the nanoparticles adsorb water molecules by hydrogen bond formation, thus enhancing proton conductivity even at high temperatures resulting in these increased full cell performances of the LiF@PFSA-based composite membrane.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: composite membranes; metal fluorides; intermediate temperature PEM fuel cells; in situ Raman; SAXS study; water retention
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Professur Experimentalphysik VII - Dynamik und Strukturbildung > Professur Experimentalphysik VII - Dynamik und Strukturbildung - Univ.-Prof. Dr. Eva M. Herzig
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Werkstoffverfahrenstechnik > Lehrstuhl Werkstoffverfahrenstechnik - Univ.-Prof. Dr.-Ing. Christina Roth
Forschungseinrichtungen > Forschungsstellen > Keylab Glastechnologie
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 14 Jan 2025 07:33
Letzte Änderung: 14 Jan 2025 09:31
URI: https://eref.uni-bayreuth.de/id/eprint/91559