Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

A Lyapunov-based ISS small-gain theorem for infinite networks of nonlinear system

Titelangaben

Kawan, Christoph ; Mironchenko, Andrii ; Zamani, Majid:
A Lyapunov-based ISS small-gain theorem for infinite networks of nonlinear system.
In: IEEE Transactions on Automatic Control. Bd. 68 (2023) Heft 3 . - S. 1447-1462.
ISSN 1558-2523
DOI: https://doi.org/10.1109/TAC.2022.3187949

Rez.:

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Lyapunovtheorie trifft Randwertregelung
415101813
AutoCPS - Automated Synthesis of Cyber-Physical Systems: A Compositional Approach
804639

Projektfinanzierung: Deutsche Forschungsgemeinschaft
H2020 ERC Starting Grant

Abstract

In this article, we show that an infinite network of input-to-state stable (ISS) subsystems, admitting ISS Lyapunov functions, itself admits an ISS Lyapunov function, provided that the couplings between the subsystems are sufficiently weak. The strength of the couplings is described in terms of the properties of an infinite-dimensional nonlinear positive operator, built from the interconnection gains. If this operator induces a uniformly globally asymptotically stable (UGAS) system, a Lyapunov function for the infinite network can be constructed. We analyze necessary and sufficient conditions for UGAS and relate them to small-gain conditions used in the stability analysis of finite networks.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: infinite-dimensional systems; input-to-state stability; large-scale systems; Lyapunov methods; nonlinear systems; small-gain theorems
Fachklassifikationen: Mathematics Subject Classification Code: 93D25 (34A35 34D20)
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik)
Profilfelder > Advanced Fields > Nichtlineare Dynamik
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Profilfelder
Profilfelder > Advanced Fields
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 06 Mär 2025 12:19
Letzte Änderung: 28 Aug 2025 07:38
URI: https://eref.uni-bayreuth.de/id/eprint/92674