Titelangaben
Mironchenko, Andrii ; Wirth, Fabian:
Non-coercive Lyapunov functions for infinite-dimensional systems.
In: Journal of Differential Equations.
Bd. 266
(2019)
Heft 11
.
- S. 7038-7072.
ISSN 1090-2732
DOI: https://doi.org/10.1016/j.jde.2018.11.026
Weitere URLs
Abstract
We show that the existence of a non-coercive Lyapunov function is sufficient for uniform global asymptotic stability (UGAS) of infinite-dimensional systems with external disturbances provided the speed of decay is measured in terms of the norm of the state and an additional mild assumption is satisfied. For evolution equations in Banach spaces with Lipschitz continuous nonlinearities these additional assumptions become especially simple. The results encompass some recent results on linear switched systems on Banach spaces. Finally, we derive new non-coercive converse Lyapunov theorems and give some examples showing the necessity of our assumptions.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | nonlinear control systems; infinite-dimensional systems; Lyapunov methods; global asymptotic stability |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) Profilfelder > Advanced Fields > Nichtlineare Dynamik |
Titel an der UBT entstanden: | Nein |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 11 Mär 2025 07:37 |
Letzte Änderung: | 11 Mär 2025 07:37 |
URI: | https://eref.uni-bayreuth.de/id/eprint/92721 |