Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

A small-gain theorem for set stability of infinite networks : Distributed observation and ISS for time-varying networks

Titelangaben

Noroozi, Navid ; Mironchenko, Andrii ; Kawan, Christoph ; Zamani, Majid:
A small-gain theorem for set stability of infinite networks : Distributed observation and ISS for time-varying networks.
In: European Journal of Control. Bd. 67 (2022) . - 100634.
ISSN 1435-5671
DOI: https://doi.org/10.1016/j.ejcon.2022.100634

Weitere URLs

Abstract

We generalize a small-gain theorem for a network of infinitely many systems, recently developed in [Kawan et. al, IEEE TAC (2021)]. The generalized small-gain theorem addresses exponential input-to-state stability with respect to closed sets, which enables us to study diverse control-theoretic problems in a unified manner, and it also allows for agents to have infinitely many neighbors. The small-gain condition, expressed in terms of the spectral radius of a gain operator collecting all the information about the internal Lyapunov gains, has several useful characterizations which simplify the verification of the condition. To demonstrate applicability of our small-gain theorem, we apply it to the stability analysis of infinite time-varying networks as well as the design of distributed observers for infinite networks.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Zusätzliche Informationen: 9 pp.
Keywords: interconnected systems; input-to-state stability; small-gain theorem; Lyapunov methods
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik)
Profilfelder > Advanced Fields > Nichtlineare Dynamik
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 17 Mär 2025 09:19
Letzte Änderung: 17 Mär 2025 09:19
URI: https://eref.uni-bayreuth.de/id/eprint/92852