Titelangaben
    
    Noroozi, Navid ; Mironchenko, Andrii ; Kawan, Christoph ; Zamani, Majid:
Set stability of infinite networks : ISS small-gain theory and its applications.
  
   
    
    In: IFAC-PapersOnLine.
      
      Bd. 54
      
      (2021)
       Heft  9
    .
     - S. 72-77.
    
    
ISSN 2405-8963
    
    
      
DOI: https://doi.org/10.1016/j.ifacol.2021.06.063
    
    
    
     
  
  
Weitere URLs
Abstract
Motivated by a paradigm shift towards a hyper-connected world, we develop a computationally tractable small-gain theorem for networks of infinitely many subsystems, termed as infinite networks. The proposed small-gain theorem addresses exponential input-to-state stability with respect to closed sets, which enables us to analyze diverse stability problems in a unified manner. The small-gain condition, expressed in terms of the spectral radius of a gain operator collecting all the information about the internal Lyapunov gains, can be numerically checked efficiently for a large class of systems. To demonstrate broad applicability of our small-gain theorem, we apply it to consensus of infinitely many agents, and to the design of distributed observers for infinite networks.
Weitere Angaben
| Publikationsform: | Artikel in einer Zeitschrift | 
|---|---|
| Begutachteter Beitrag: | Ja | 
| Keywords: | nonlinear systems; small-gain theorems; infinite-dimensional systems; input-to-state stability; Lyapunov methods; large-scale systems | 
        
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) Profilfelder > Advanced Fields > Nichtlineare Dynamik  | 
        
| Titel an der UBT entstanden: | Nein | 
| Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik | 
| Eingestellt am: | 17 Mär 2025 11:46 | 
| Letzte Änderung: | 17 Mär 2025 11:46 | 
| URI: | https://eref.uni-bayreuth.de/id/eprint/92853 | 
        
 bei Google Scholar