Titelangaben
Kawan, Christoph ; Mironchenko, Andrii ; Swikir, Abdalla ; Noroozi, Navid ; Zamani, Majid:
A Lyapunov-based small-gain theorem for infinite networks.
In: IEEE Transactions on Automatic Control.
Bd. 66
(2021)
Heft 12
.
- S. 5830-5844.
ISSN 1558-2523
DOI: https://doi.org/10.1109/TAC.2020.3042410
Weitere URLs
Abstract
This article presents a small-gain theorem for networks composed of a countably infinite number of finite-dimensional subsystems. Assuming that each subsystem is exponentially input-to-state stable, we show that if the gain operator, collecting all the information about the internal Lyapunov gains, has a spectral radius less than one, the overall infinite network is exponentially input-to-state stable. The effectiveness of our result is illustrated through several examples including nonlinear spatially invariant systems with sector nonlinearities and a road traffic network.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | infinite-dimensional systems; input-to-state stability; large-scale systems; Lyapunov methods; nonlinear systems; small-gain theorems |
Fachklassifikationen: | arXiv Subjects: math.OC |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) Profilfelder > Advanced Fields > Nichtlineare Dynamik |
Titel an der UBT entstanden: | Nein |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 17 Mär 2025 09:53 |
Letzte Änderung: | 17 Mär 2025 09:53 |
URI: | https://eref.uni-bayreuth.de/id/eprint/92854 |