Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Case ID Revealed HERE: Hybrid Elusive Case Repair Method for Transformer-Driven Business Process Event Log Enhancement

Titelangaben

Zetzsche, Felix ; Andrews, Robert ; ter Hofstede, Arthur H. M. ; Röglinger, Maximilian ; Schmid, Sebastian Johannes ; Wynn, Moe Thandar:
Case ID Revealed HERE: Hybrid Elusive Case Repair Method for Transformer-Driven Business Process Event Log Enhancement.
In: Business & Information Systems Engineering. (März 2025) .
ISSN 1867-0202
DOI: https://doi.org/10.1007/s12599-025-00935-5

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Process mining is a data-driven technique that leverages event logs to analyze, visualize, and improve business processes. However, data quality is often low in real-world settings due to various event log imperfections, which, in turn, degrade the accuracy and reliability of process mining insights. One notable example is the elusive case imperfection pattern, describing the absence of case identifiers responsible for linking events to a specific process instance. Elusive cases are particularly problematic, as process mining techniques rely heavily on the accurate mapping of events to instances to provide meaningful and actionable insights into business processes. To address this issue, the study follows the Design Science Research paradigm to iteratively develop a method for repairing the elusive case imperfection pattern in event logs. The proposed Hybrid Elusive Case Repair Method (HERE) combines a traditional, rule-based approach with generative artificial intelligence, specifically the Transformer architecture. By integrating domain knowledge, HERE constitutes a comprehensive human-in-the-loop approach, enhancing its ability to accurately repair elusive cases in event logs. The method is evaluated by instantiating it as a software prototype, applying it to repair three publicly accessible event logs, and seeking expert feedback in a total of 21 interviews conducted at different points during the design and development phase. The results demonstrate that HERE makes significant progress in addressing the elusive case imperfection pattern, particularly when provided with sufficient data volume, laying the groundwork for resolving further data quality issues in process mining.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Process mining; Event log quality; Event log repair; Generative artificial intelligence; Transformer; Business process management
Institutionen der Universität: Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre
Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre > Lehrstuhl Betriebswirtschaftslehre XVII - Wirtschaftsinformatik und Wertorientiertes Prozessmanagement
Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre > Lehrstuhl Betriebswirtschaftslehre XVII - Wirtschaftsinformatik und Wertorientiertes Prozessmanagement > Lehrstuhl Betriebswirtschaftslehre XVII - Wirtschaftsinformatik und Wertorientiertes Prozessmanagement - Univ.-Prof. Dr. Maximilian Röglinger
Forschungseinrichtungen
Forschungseinrichtungen > Institute in Verbindung mit der Universität
Forschungseinrichtungen > Institute in Verbindung mit der Universität > Institutsteil Wirtschaftsinformatik des Fraunhofer FIT
Forschungseinrichtungen > Institute in Verbindung mit der Universität > FIM Forschungsinstitut für Informationsmanagement
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
300 Sozialwissenschaften > 330 Wirtschaft
Eingestellt am: 17 Apr 2025 05:28
Letzte Änderung: 17 Apr 2025 06:25
URI: https://eref.uni-bayreuth.de/id/eprint/93314