Titelangaben
Christmann, Andreas ; Lei, Yunwen:
Bootstrap SGD: Algorithmic Stability and Robustness.
In: Analysis and Applications.
Bd. 23
(2025)
Heft 5
.
- S. 675-703.
ISSN 0219-5305
DOI: https://doi.org/10.1142/S0219530525400032
Dies ist die aktuelle Version des Eintrags.
Weitere URLs
Angaben zu Projekten
Projektfinanzierung: |
Andere |
---|
Abstract
In this paper, some methods to use the empirical bootstrap approach for stochastic gradient descent (SGD) to minimize the empirical risk over a separable Hilbert space are investigated from the view point of algorithmic stability and statistical robustness. The first two types of approaches are based on averages and are investigated from a theoretical point of view. A generalization analysis for bootstrap SGD of Type 1 and Type 2 based on algorithmic stability is done. Another type of bootstrap SGD is proposed to demonstrate that it is possible to construct purely distribution-free pointwise confidence intervals of the median curve using bootstrap SGD.
Weitere Angaben
Zu diesem Eintrag verfügbare Versionen
-
Bootstrap SGD: Algorithmic Stability and Robustness. (deposited 05 Sep 2024 05:34)
- Bootstrap SGD: Algorithmic Stability and Robustness. (deposited 25 Jun 2025 06:02) [Aktuelle Anzeige]