Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Idea Evaluation for Solutions to Specialized Problems : Leveraging the Potential of Crowds and Large Language Models

Titelangaben

Gimpel, Henner ; Laubacher, Robert ; Probost, Fabian ; Schäfer, Ricarda ; Schoch, Manfred:
Idea Evaluation for Solutions to Specialized Problems : Leveraging the Potential of Crowds and Large Language Models.
In: Group Decision and Negotiation. (Juni 2025) .
ISSN 1572-9907
DOI: https://doi.org/10.1007/s10726-025-09935-y

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
ABBA
Ohne Angabe

Abstract

Complex problems such as climate change pose severe challenges to societies worldwide. To overcome these challenges, digital innovation contests have emerged as a promising tool for idea generation. However, assessing idea quality in innovation contests is becoming increasingly problematic in domains where specialized knowledge is needed. Traditionally, expert juries are responsible for idea evaluation in such contests. However, experts are a substantial bottleneck as they are often scarce and expensive. To assess whether expert juries could be replaced, we consider two approaches. We leverage crowdsourcing and a Large Language Model (LLM) to evaluate ideas, two approaches that are similar in terms of the aggregation of collective knowledge and could therefore be close to expert knowledge. We compare expert jury evaluations from innovation contests on climate change with crowdsourced and LLM’s evaluations and assess performance differences. Results indicate that crowds and LLMs have the ability to evaluate ideas in the complex problem domain while contest specialization – the degree to which a contest relates to a knowledge-intensive domain rather than a broad field of interest – is an inhibitor of crowd evaluation performance but does not influence the evaluation performance of LLMs. Our contribution lies with demonstrating that crowds and LLMs (as opposed to traditional expert juries) are suitable for idea evaluation and allows innovation contest operators to integrate the knowledge of crowds and LLMs to reduce the resource bottleneck of expert juries.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Idea Evaluation; Crowdsourcing; Large Language Model; Specialized Knowledge
Institutionen der Universität: Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre
Forschungseinrichtungen
Forschungseinrichtungen > Institute in Verbindung mit der Universität
Forschungseinrichtungen > Institute in Verbindung mit der Universität > Institutsteil Wirtschaftsinformatik des Fraunhofer FIT
Forschungseinrichtungen > Institute in Verbindung mit der Universität > FIM Forschungsinstitut für Informationsmanagement
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
300 Sozialwissenschaften > 330 Wirtschaft
Eingestellt am: 18 Jul 2025 09:30
Letzte Änderung: 18 Jul 2025 09:30
URI: https://eref.uni-bayreuth.de/id/eprint/94226