Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Damping Versus Oscillations for a Gravitational Vlasov–Poisson System

Titelangaben

Hadžić, Mahir ; Rein, Gerhard ; Schrecker, Matthew ; Straub, Christopher:
Damping Versus Oscillations for a Gravitational Vlasov–Poisson System.
In: Archive for Rational Mechanics and Analysis. Bd. 249 (2025) . - 45.
ISSN 1432-0673
DOI: https://doi.org/10.1007/s00205-025-02114-y

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

We consider a family of isolated inhomogeneous steady
states of the gravitational Vlasov–Poisson system with a point mass at the centre. These are parametrised
by the polytropic index k > 1/2, so that the phase space density of the steady state is C1 at the vacuum boundary
if and only if k > 1. We prove the following sharp
dichotomy result: if k > 1, the linear perturbations Landau damp and if 1/2 < k ≤ 1 they do not. The above dichotomy is a new phenomenon and highlights the importance of steady state regularity at the vacuum boundary in the discussion of the long-time behaviour of the perturbations. Our proof of (nonquantitative) gravitational relaxation around steady states with k > 1 is the first such result for the
gravitational Vlasov–Poisson system. The key novelty of this work is the proof that no embedded eigenvalues exist in the essential spectrum of the linearised system.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: gravitational Landau-damping; linear oscillations; Vlasov-Poisson system
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Professur Angewandte Mathematik > Professur Angewandte Mathematik - Univ.-Prof. Dr. Gerhard Rein
Profilfelder > Advanced Fields > Nichtlineare Dynamik
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 01 Sep 2025 08:16
Letzte Änderung: 01 Sep 2025 08:16
URI: https://eref.uni-bayreuth.de/id/eprint/94556