Titelangaben
Günther, Sebastian ; Rein, Gerhard ; Straub, Christopher:
A Birman–Schwinger Principle in General Relativity: Linearly Stable Shells of Collisionless Matter Surrounding a Black Hole.
In: Archive for Rational Mechanics and Analysis.
Bd. 249
(2025)
.
- 54.
ISSN 1432-0673
DOI: https://doi.org/10.1007/s00205-025-02123-x
Abstract
We develop a Birman–Schwinger principle for the spherically symmetric, asymptotically flat Einstein–Vlasov system. The principle characterizes the stability properties of steady states such as the positive definiteness of an Antonov-type operator or the existence of exponentially growing modes in terms of a one-dimensional variational problem for a Hilbert–Schmidt operator. This requires a refined analysis of the operators arising from linearizing the system, which uses action-angle type variables. For the latter, a single-well structure of the effective potential for the particle flow of the steady state is required. This natural property can be verified for a broad class of singularity-free steady states. As a particular example for the application of our Birman–Schwinger principle we consider steady states where a Schwarzschild black hole is surrounded by a shell of Vlasov matter. We prove the existence of such steady states and derive linear stability if the mass of the Vlasov shell is small compared to the mass of the black hole.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | Birman-Schwinger principle; Einstein-Vlasov system; stability of steady states |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Professur Angewandte Mathematik > Professur Angewandte Mathematik - Univ.-Prof. Dr. Gerhard Rein Profilfelder > Advanced Fields > Nichtlineare Dynamik |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 01 Sep 2025 08:21 |
Letzte Änderung: | 01 Sep 2025 08:21 |
URI: | https://eref.uni-bayreuth.de/id/eprint/94558 |