Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

A mathematical foundation for QUMOND

Titelangaben

Frenkler, Joachim:
A mathematical foundation for QUMOND.
In: Journal of Mathematical Physics. Bd. 66 (2025) Heft 1 . - 012501.
ISSN 1089-7658
DOI: https://doi.org/10.1063/5.0219100

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Mathematische Modellierung von Galaxien im Rahmen von MOND (Modified Newtonian Dynamics)
353124139

Projektfinanzierung: Deutsche Forschungsgemeinschaft

Abstract

We link the QUMOND theory with the Helmholtz-Weyl decomposition and introduce a new formula for the gradient of the Mondian potential using singular integral operators. This approach allows us to demonstrate that, under very general assumptions on the mass distribution, the Mondian potential is well-defined, once weakly differentiable, with its gradient given through the Helmholtz-Weyl decomposition. Furthermore, we establish that the gradient of the Mondian potential is an Lp vector field. These findings lay the foundation for a rigorous mathematical analysis of various issues within the realm of QUMOND. Further, we prove that the once weakly differentiable Mondian potential solves a second-order partial differential equation in distribution sense. Thus, the question arises whether the potential has second-order derivatives. We affirmatively answer this question in the situation of spherical symmetry, although our investigation reveals that the regularity of the second derivatives is weaker than anticipated. We doubt that a similarly general regularity result can be proven without symmetry assumptions. In conclusion, we explore the implications of our results for numerous problems within the domain of QUMOND.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: General Relativity and Gravitation; Mathematics - Analysis of PDEs; Astrophysics - Astrophysics of Galaxies; Mathematical Physics
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik VI (Nichtlineare Analysis und Mathematische Physik)
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
500 Naturwissenschaften und Mathematik > 530 Physik
Eingestellt am: 12 Sep 2025 07:01
Letzte Änderung: 12 Sep 2025 07:01
URI: https://eref.uni-bayreuth.de/id/eprint/94661