Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Local structural distortion and energy gradient enhance lithium ionic conductivity in high-entropy oxide

Titelangaben

Li, Qingyuan ; Ho, Hsin-Pei ; Zeng, Zhipeng ; Li, Wei ; Wang, Qingsong ; Dong, Kang ; Tantratian, Karnpiwat ; Chen, Lei ; Rousse, Gwenaelle ; Lu, Xiner ; He, Kai ; Chen, Yan ; Thieu, Nhat Anh ; Chen, Shaoshuai ; Chen, Xiujuan ; Zhang, Dawei ; Tian, Hanchen ; Wang, Yi ; Ma, Liang ; Frost, Matthew ; An, Ke ; Hu, Shanshan ; Li, Wenyuan ; Manke, Ingo ; Luo, Jian ; Wang, Jeng-Han ; Liu, Xingbo:
Local structural distortion and energy gradient enhance lithium ionic conductivity in high-entropy oxide.
In: Materials Today. Bd. 89 (2025) . - S. 26-34.
ISSN 1873-4103
DOI: https://doi.org/10.1016/j.mattod.2025.08.012

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Li-rich disordered rock-salt oxides have been extensively studied as electrode materials for lithium-ion batteries, however, their diffusion of lithium ions relies on the presence of excess lithium-ion content (>54.5 atom relative to total metal ions). An emerging high-entropy strategy can reduce the lithium-ion content and enhance lithium-ion conductivity in sodium superionic conductor (e.g. Li(Ti,Zr,Sn,Hf)2(PO4)3). However, the high ionic conductivity in Li-stuffed disordered rock-salt oxides with low lithium-ion content is generally attributed to its cocktail effect, and the underlying mechanisms remains unclear. Here, we develop a robust Li-poor disordered rock-salt high-entropy oxide, (MgCoNiCuZn)0.75Li0.25O (HEOLi) as an artificial solid electrolyte interphase coating layer to stabilize lithium metal anodes, achieving an impressive cycling stability of over 15000 h. We elucidate a cocktail effect of HEOLi arising from its disordered structure of HEOLi, with unique crystallographic local structural distortions, delocalized electron structure, and energy gradients, enabling high Li-ion conductivity. These energy gradients reduce the overall energy barrier and promote Li+ hopping through preferential pathways within the HEOLi. This work offers insight into the cocktail effect of high-entropy and the Li-ion conduction mechanism, facilitating the rational design of conductive high-entropy ceramics.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayerisches Zentrum für Batterietechnik - BayBatt
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 20 Okt 2025 08:29
Letzte Änderung: 20 Okt 2025 08:29
URI: https://eref.uni-bayreuth.de/id/eprint/94937