Title data
Li, Qingyuan ; Ho, Hsin-Pei ; Zeng, Zhipeng ; Li, Wei ; Wang, Qingsong ; Dong, Kang ; Tantratian, Karnpiwat ; Chen, Lei ; Rousse, Gwenaelle ; Lu, Xiner ; He, Kai ; Chen, Yan ; Thieu, Nhat Anh ; Chen, Shaoshuai ; Chen, Xiujuan ; Zhang, Dawei ; Tian, Hanchen ; Wang, Yi ; Ma, Liang ; Frost, Matthew ; An, Ke ; Hu, Shanshan ; Li, Wenyuan ; Manke, Ingo ; Luo, Jian ; Wang, Jeng-Han ; Liu, Xingbo:
Local structural distortion and energy gradient enhance lithium ionic conductivity in high-entropy oxide.
In: Materials Today.
Vol. 89
(2025)
.
- pp. 26-34.
ISSN 1873-4103
DOI: https://doi.org/10.1016/j.mattod.2025.08.012
Abstract in another language
Li-rich disordered rock-salt oxides have been extensively studied as electrode materials for lithium-ion batteries, however, their diffusion of lithium ions relies on the presence of excess lithium-ion content (>54.5 atom relative to total metal ions). An emerging high-entropy strategy can reduce the lithium-ion content and enhance lithium-ion conductivity in sodium superionic conductor (e.g. Li(Ti,Zr,Sn,Hf)2(PO4)3). However, the high ionic conductivity in Li-stuffed disordered rock-salt oxides with low lithium-ion content is generally attributed to its cocktail effect, and the underlying mechanisms remains unclear. Here, we develop a robust Li-poor disordered rock-salt high-entropy oxide, (MgCoNiCuZn)0.75Li0.25O (HEOLi) as an artificial solid electrolyte interphase coating layer to stabilize lithium metal anodes, achieving an impressive cycling stability of over 15000 h. We elucidate a cocktail effect of HEOLi arising from its disordered structure of HEOLi, with unique crystallographic local structural distortions, delocalized electron structure, and energy gradients, enabling high Li-ion conductivity. These energy gradients reduce the overall energy barrier and promote Li+ hopping through preferential pathways within the HEOLi. This work offers insight into the cocktail effect of high-entropy and the Li-ion conduction mechanism, facilitating the rational design of conductive high-entropy ceramics.
Further data
| Item Type: | Article in a journal |
|---|---|
| Refereed: | Yes |
| Institutions of the University: | Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry Research Institutions > Central research institutes > Bayerisches Zentrum für Batterietechnik - BayBatt |
| Result of work at the UBT: | Yes |
| DDC Subjects: | 500 Science > 500 Natural sciences 500 Science > 540 Chemistry |
| Date Deposited: | 20 Oct 2025 08:29 |
| Last Modified: | 20 Oct 2025 08:29 |
| URI: | https://eref.uni-bayreuth.de/id/eprint/94937 |

at Google Scholar