Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Reassessing anionic redox in conventional layered oxide cathodes for Li-ion batteries : ionic and covalent mechanisms

Titelangaben

Yin, Jianhua ; Wu, Zixin ; Fang, Kai ; Zhu, Yuanlong ; Zhang, Kang ; Zhang, Haitang ; Chen, Yilong ; Li, Li ; Fan, Longlong ; Dong, Kang ; Zheng, Lirong ; Wang, Qingsong ; Huang, Huan ; Zhang, Jing ; Qiao, Yu ; Sun, Shi-Gang:
Reassessing anionic redox in conventional layered oxide cathodes for Li-ion batteries : ionic and covalent mechanisms.
In: Chemical Science. Bd. 16 (2025) Heft 19 . - S. 8268-8281.
ISSN 2041-6539
DOI: https://doi.org/10.1039/D5SC00429B

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Efforts to improve the specific capacity and energy density of lithium nickel–cobalt–manganese oxide (NCM) cathodes focus on operating at high voltages or increasing nickel content. However, both approaches necessitate a thorough understanding of the charge compensation mechanism. Traditional ionic-bonding models which separate transition metal (TM) and oxygen redox processes prove inadequate as anionic redox becomes significant, ignoring crucial metal–oxygen interactions. In this study, we systematically investigate the charge compensation process in low-nickel and high-nickel NCMs under high-voltage conditions. Here, the involvement of oxygen is critical in redox, as it shares electrons with TM to form a strong TM–O covalent bond. Compared to low-Ni NCMs, high-Ni NCMs exhibit an oxygen dimerization stage with trapped O2, which leads to the aggregation of vacancies in the transition metal layer, thereby accelerating structural destabilization. This variation in oxygen dimerization behavior among NCMs is closely correlated with differences in elemental composition, spin states, and stacking faults. Our findings comprehensively reveal the redox behaviors of transition metals and oxygen, particularly highlighting oxygen behavior at each delithiation state, helping to optimize the utilization of oxygen redox reactions in commercial NCM compounds for high-capacity and high-energy-density lithium-ion batteries.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayerisches Zentrum für Batterietechnik - BayBatt
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 20 Okt 2025 09:55
Letzte Änderung: 20 Okt 2025 09:55
URI: https://eref.uni-bayreuth.de/id/eprint/94938