Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Conformally coated scaffold design using water-tolerant Pr₁.₈Ba₀.₂NiO₄.₁ for protonic ceramic electrochemical cells with 5,000-h electrolysis stability

Titelangaben

Tian, Hanchen ; Li, Wei ; Lee, Yueh-Lin ; Zheng, Hongkui ; Li, Qingyuan ; Ma, Liang ; Bhattacharyya, Debangsu ; Chen, Xiujuan ; Zhang, Dawei ; Li, Guosheng ; Wang, Yi ; Li, Li ; Wang, Qingsong ; Xia, Fang ; Kartal, Muhammet ; Shao, Zhuozhao ; Rowles, Matthew R. ; Li, Wenyuan ; Saidi, Wissam A. ; Liu, Cijie ; Li, Xuemei ; Luo, Jian ; Li, Xiaolin ; He, Kai ; Liu, Xingbo:
Conformally coated scaffold design using water-tolerant Pr₁.₈Ba₀.₂NiO₄.₁ for protonic ceramic electrochemical cells with 5,000-h electrolysis stability.
In: Nature Energy. Bd. 10 (2025) Heft 7 . - S. 890-903.
ISSN 2058-7546
DOI: https://doi.org/10.1038/s41560-025-01800-1

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Protonic ceramic electrochemical cells (PCECs) have potential as long-duration energy storage systems. However, their operational stability is limited under industrially relevant conditions due to the intrinsic chemical instability of doped barium cerate-based electrolytes and oxygen electrodes against H2O, as well as the poor electrode–electrolyte interfacial contact. Here we present a conformally coated scaffold (CCS) design to comprehensively address these issues. A porous proton-conducting scaffold is constructed and conformally coated with Pr1.8Ba0.2NiO4.1 electrocatalyst, which has high chemical stability against H2O, triple conductivity and hydration capability, and protects vulnerable electrolytes from H2O. The CCS structure consolidates the electrode–electrolyte interfacial bonding to enable fast proton transfer in the percolated network. This design enables PCECs to reach electrolysis stability for 5,000 h at −1.5 A cm−2 and 600 °C in 40% H2O. This work provides a general strategy to stabilize PCECs and offers guidance for designing resilient and stable solid-state energy storage systems.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayerisches Zentrum für Batterietechnik - BayBatt
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 20 Okt 2025 10:50
Letzte Änderung: 20 Okt 2025 10:50
URI: https://eref.uni-bayreuth.de/id/eprint/94940