Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

The Road Not Taken : Representing Expert Knowledge for Route Similarities in Sustainable Tourism using Machine Learning

Titelangaben

Bollenbach, Jessica ; Rebholz, Dominik ; Keller, Robert:
The Road Not Taken : Representing Expert Knowledge for Route Similarities in Sustainable Tourism using Machine Learning.
In: Electronic Markets. Bd. 35 (2025) . - 72.
ISSN 1422-8890
DOI: https://doi.org/10.1007/s12525-025-00816-5

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

As recreational tourism in rural areas rises in popularity, overtourism, and crowding pose growing challenges, impacting both society and the environment. To support sustainable smart tourism, an information system for visitor management offers a valuable approach. A significant challenge in this context is the identification of suitable alternatives to congested areas. This paper proposes a method to calculate route similarities with distance-based algorithms and machine learning models using descriptive data to redirect visitors to less-crowded paths. A case study in a nature park validates the approach, using realworld hiking data from an online outdoor platform. Expert surveys on route similarity are used to train the models and evaluate the results. Machine learning significantly outperforms traditional similarity algorithms, achieving up to 117% higher R2 values (0.448 vs. 0.206), 26% lower MSE values (0.530 vs. 0.719), and 40% higher Spearman correlations (0.699 vs. 0.498). The random forest regression model yields the best results. This research provides a foundation for future efforts to enhance sustainable tourism by offering a data-driven approach to identifying alternative routes that align with visitor preferences.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Visitor management; Route similarity; Machine learning
Institutionen der Universität: Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre
Forschungseinrichtungen
Forschungseinrichtungen > Institute in Verbindung mit der Universität
Forschungseinrichtungen > Institute in Verbindung mit der Universität > Institutsteil Wirtschaftsinformatik des Fraunhofer FIT
Forschungseinrichtungen > Institute in Verbindung mit der Universität > FIM Forschungsinstitut für Informationsmanagement
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
300 Sozialwissenschaften > 330 Wirtschaft
Eingestellt am: 31 Okt 2025 08:37
Letzte Änderung: 31 Okt 2025 08:37
URI: https://eref.uni-bayreuth.de/id/eprint/95044