Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Process mining on sensor data : a review of related works

Titelangaben

Brzychczy, Edyta ; Aleknonytė-Resch, Milda ; Janssen, Dominik ; Koschmider, Agnes:
Process mining on sensor data : a review of related works.
In: Knowledge and Information Systems. Bd. 67 (2025) . - S. 4915-4948.
ISSN 0219-3116
DOI: https://doi.org/10.1007/s10115-024-02297-y

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Open Access Publizieren
Ohne Angabe

Abstract

Process mining is an efficient technique that combines data analysis and behavioural process aspects to uncover end-to-end processes from data. Recently, the application of process mining on unstructured data has become popular. Particularly, sensor data from IoT-based systems allow process mining to uncover novel insights that can be used to identify bottlenecks in the process and support decision-making. However, the application of process mining requires bridging challenges. First, (raw) sensor data must be abstracted into discrete events to be useful for process mining. Second, meaningful events must be distilled from the abstracted events, fulfilling the purpose of the analysis. In this paper, a comprehensive literature study is conducted to understand the field of process mining for sensor data. The literature search was guided by three research questions: (1) what are common and underrepresented sensor types for process mining, (2) which aspects of process mining are covered on sensor data, and (3) what are the best practices to improve the understanding, design, and evaluation of process mining on sensor data. A total of 36 related papers were identified, which were then used as a foundation to structure the field of process mining on sensor data and provide recommendations and future research directions. The findings serve as a starting point for designing new techniques, enhancing the dissemination of related approaches, and identifying research gaps in process mining on sensor data.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Process mining; Sensor data; Event logs; Activity discovery; IoT
Institutionen der Universität: Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre > Lehrstuhl Betriebswirtschaftslehre XIX - Wirtschaftsinformatik und Process Analytics > Lehrstuhl Betriebswirtschaftslehre XIX - Wirtschaftsinformatik und Process Analytics - Univ.-Prof. Dr. Agnes Koschmider
Fakultäten
Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät
Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre
Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre > Lehrstuhl Betriebswirtschaftslehre XIX - Wirtschaftsinformatik und Process Analytics
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 300 Sozialwissenschaften > 330 Wirtschaft
Eingestellt am: 25 Nov 2025 08:11
Letzte Änderung: 27 Jan 2026 12:30
URI: https://eref.uni-bayreuth.de/id/eprint/95311