Titelangaben
Schiller, Julian D. ; Grüne, Lars ; Müller, Matthias A.:
Optimal state estimation : Turnpike analysis and performance results.
In:
Proceedings of the 2025 European Control Conference (ECC 2025). -
Piscataway, NJ
: IEEE
,
2025
. - S. 351-357
ISBN 978-3-907144-12-1
DOI: https://doi.org/10.23919/ECC65951.2025.11186977
Dies ist die aktuelle Version des Eintrags.
Weitere URLs
Angaben zu Projekten
| Projekttitel: |
Offizieller Projekttitel Projekt-ID Stochastische Optimale Steuerung und MPC - Dissipativität, Risiko und Regelgüte 499435839 Robuste Stabilität und Suboptimalität bei der Zustandsschätzung mit bewegtem Horizont---Von konzeptionellen zu praktisch relevanten Garantien 426459964 |
|---|---|
| Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
Abstract
In this paper, we introduce turnpike arguments in the context of optimal state estimation. In particular, we show that the optimal solution of the state estimation problem involving all available past data serves as turnpike for the solutions of truncated problems involving only a subset of the data. We mathematically formalize this phenomenon and derive a sufficient condition that relies on a decaying sensitivity property of the underlying nonlinear program. As second contribution, we show how a specific turnpike property can be used to establish performance guarantees when approximating the optimal solution of the full problem by a sequence of trun-cated problems, and we show that the resulting performance (both averaged and non-averaged) is approximately optimal with error terms that can be made arbitrarily small by an appropriate choice of the horizon length. In addition, we discuss interesting implications of these results for the practically relevant case of moving horizon estimation and illustrate our results with a numerical example.
Weitere Angaben
Zu diesem Eintrag verfügbare Versionen
-
Optimal state estimation : Turnpike analysis and performance results. (deposited 04 Okt 2024 08:34)
- Optimal state estimation : Turnpike analysis and performance results. (deposited 02 Dec 2025 11:12) [Aktuelle Anzeige]

bei Google Scholar