Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Activity and degradation of Pt–Co and Pt–Ni alloy catalysts for application in high-temperature PEM fuel cells

Titelangaben

Buriánek, Jan Dismas ; Prokop, Martin ; Bystron, Tomas ; Veselý, Martin ; Koláčný, Lukáš ; Ferreira Gomes Lobo, Bruna ; Lobo, Carlos M. S. ; Gatalo, Matija ; Pavko, Luka ; Hodnik, Nejc ; Paidar, Martin ; Roth, Christina ; Gaberscek, Miran ; Bouzek, Karel:
Activity and degradation of Pt–Co and Pt–Ni alloy catalysts for application in high-temperature PEM fuel cells.
In: EES Catalysis. (2026) .
ISSN 2753-801X
DOI: https://doi.org/10.1039/D5EY00279F

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Live-XAS
05K22WC1
HighHy - Development of highly active anodes for anion exchange membrane electrolysers to enable low-cost green hydrogen
03SF0689B
SPP 2370: Verknüpfung von Katalysatoren, Mechanismen und Reaktorkonzepten für die Umwandlung von Distickstoff durch elektrokatalytische, photokatalytische und photoelektrochemische Methoden ("Nitroconversion")
460921994
The Energy Conversion and Storage
CZ.02.01.01/00/ 22_008/0004617
NATO Science for Peace and Security Program
G6230

Projektfinanzierung: Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
Slovenian Research and Innovation Agency (ARIS)
University of Chemistry and Technology, Prague
Czech Science Foundation (GAČR)
NATO

Abstract

In the emerging hydrogen energy economy, proton-exchange membrane fuel cells (PEMFCs) serve as a key enabling technology, yet their cost is among other things dominated by platinum group metals-based cathode catalysts. This paper is focused on investigation of intermetallic Pt–Co and Pt–Ni nanoparticles supported on carbon (Ketjen black, reduced graphene oxide) as low-Pt-load candidates for high-temperature PEMFCs (HT-PEMFCs) operated at elevated temperature ∼180 °C in the presence of concentrated phosphoric acid. Catalytic activity toward the oxygen reduction reaction (ORR) was quantified by rotating electrode measurements (exchange current densities, Tafel slopes), and stability was probed by leaching in 97.6 wt H3PO4 at 180 °C followed by post-exposure characterisation. A suite of techniques – XAS, XRD, TEM/EDS, XRF, Raman spectroscopy and ICP-OES – was used to study changes in composition and structure during degradation. All alloy catalysts showed in HClO4 at 25 °C higher ORR activity than commercial Pt/C. However, exposure to concentrated H3PO4 at 180 °C caused electrochemically active surface area loss, reduced ORR activity and supported Pt crystallite growth, Co/Ni dissolution, and surface reorganisation. Comparatively, reduced graphene oxide-supported catalyst was more resistant to ripening and dealloying than its Ketjen black analogue, and Pt–Ni alloy was more stable than Pt–Co. Overall, the results disentangle the roles of the carbon support and alloy composition and outline activity – stability trade-offs that guide the design of low-Pt loading cathodes for HT-PEMFCs.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Werkstoffverfahrenstechnik > Lehrstuhl Werkstoffverfahrenstechnik - Univ.-Prof. Dr.-Ing. Christina Roth
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Werkstoffverfahrenstechnik
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 21 Jan 2026 09:53
Letzte Änderung: 22 Jan 2026 06:44
URI: https://eref.uni-bayreuth.de/id/eprint/95804