Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Increased Belowground Carbon Allocation Reduces Soil Carbon Losses Under Long-Term Warming

Titelangaben

Schindlbacher, Andreas ; Kwatcho Kengdo, Steve ; Heinzle, Jakob ; Tian, Ye ; Mayer, Mathias ; Gadermaier, Josef ; Shi, Chupei ; Urbina Malo, Caro ; Liu, Xiaofei ; Inselsbacher, Erich ; Jandl, Robert ; Sierra, Carlos A. ; Wanek, Wolfgang ; Borken, Werner:
Increased Belowground Carbon Allocation Reduces Soil Carbon Losses Under Long-Term Warming.
In: Global Change Biology. Bd. 31 (2025) Heft 10 . - e70561.
ISSN 1365-2486
DOI: https://doi.org/10.1111/gcb.70561

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Bodenerwärmungs-Experiment Achenkirch
397643203
Open Access Publizieren
Ohne Angabe

Projektfinanzierung: Deutsche Forschungsgemeinschaft

Abstract

The response of the carbon cycle in forests to global warming could lead to a positive climate feedback if warming accelerates the mineralization of soil organic carbon (SOC), thereby causing net emissions of CO2 into the atmosphere. In Europe, carbon-rich alpine forest soils could be particularly affected by global warming, as a greater rise in temperature is expected in this region than the global average. Here we show that nearly two decades of experimental soil warming (+4°C during the snow-free seasons) in a mountain forest in the Northern Limestone Alps significantly (~13% per 1°C warming) and persistently (no change in response over 18 years) increased soil CO2 effluxes. The SOC stocks in the warmed plots decreased compared to controls, yet non-significantly, and quantitatively much less than the surplus carbon outflux from warmed soil suggests. We attribute the increase in soil CO2 efflux primarily to stimulation of root respiration, which was most sensitive to long-term warming. Furthermore, increased root production, faster fine root turnover, and increased root exudation likely not only facilitated autotrophic respiration but also replenished the SOC pool. The radiocarbon age of SOC indicates a rejuvenation of SOC likely by increased input of root carbon into the lower topsoil. Overall, our findings suggest that increased C allocation into the rhizosphere can at least partially compensate for the C loss through increased SOC mineralization with rising temperatures over many years.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: radiocarbon; root respiration; roots; soil CO2 efflux; soil organic carbon; warming
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Lehrstuhl Bodenökologie
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayreuther Zentrum für Ökologie und Umweltforschung - BayCEER
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie
Eingestellt am: 09 Feb 2026 13:27
Letzte Änderung: 09 Feb 2026 13:27
URI: https://eref.uni-bayreuth.de/id/eprint/96046