Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Spinel-based NiMn2O4 negative temperature coefficient (NTC) thermistor thick films produced by the Aerosol Deposition Method (ADM)

Title data

Bruckner, Michaela ; Münch, Christian ; Schuurman, Sophie ; Poulain, Veronique ; Kita, Jaroslaw ; Moos, Ralf:
Spinel-based NiMn2O4 negative temperature coefficient (NTC) thermistor thick films produced by the Aerosol Deposition Method (ADM).
2017
Event: 92. DKG Jahrestagung & Symposium Hochleistungskeramik 2017 / 92st DKG Annual Conference & Symposium on High-Performance Ceramics 2017 , 19.03.2017 – 22.03.2017 , Berlin, Germany.
(Conference item: Conference , Speech )

Project information

Project financing: Bayerische Forschungsstiftung

Abstract in another language

Nickel manganese oxides are well-known semiconducting ceramics whose electrical resistance decreases exponentially with increasing temperature. Due to their high (negative) temperature coefficient (NTCR), they are well suited and widely used for temperature sensor applications. Conventional NTC thermistors are produced by sinteringbased methods such as pressing, extrusion or film casting. These methods are very time-consuming and energy-intensive. In this work, we present a novel spray coating process called aerosol deposition method (ADM) to produce dense ceramic NTCR films at room temperature directly from the initial ceramic powder. Using this method, nanocrystalline single-phase spinel NiMn2O4 thick films were successfully deposited on stiff substrates such as alumina, steel, silicon as well as on flexible substrates such as polyimide films. The electrical characterisation was conducted on films deposited on alumina substrates with screen-printed electrode structures. The electrical NTCR properties of the deposited, annealed and aged thick films were characterized in a silicone oil thermostatic bath between 25 °C and 85 °C. On the basis of these results, the reproducibility and the drift stability of the electric resistance R and the B constant were determined. Additionally, the structure and morphology of the deposited and annealed NiMn2O4 films were characterized with SEM and XRD.

Further data

Item Type: Conference item (Speech)
Refereed: Yes
Institutions of the University: Faculties > Faculty of Engineering Science
Faculties > Faculty of Engineering Science > Chair Functional Materials > Chair Functional Materials - Univ.-Prof. Dr.-Ing. Ralf Moos
Profile Fields > Advanced Fields > Advanced Materials
Research Institutions > Research Centres > Bayreuth Center for Material Science and Engineering - BayMAT
Faculties
Faculties > Faculty of Engineering Science > Chair Functional Materials
Profile Fields
Profile Fields > Advanced Fields
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 600 Technology, medicine, applied sciences > 620 Engineering
Date Deposited: 27 Mar 2017 11:50
Last Modified: 27 Mar 2017 11:50
URI: https://eref.uni-bayreuth.de/id/eprint/36653