Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus auf ERef Bayreuth
plus bei Google Scholar


On the defect chemistry of BaFe0.89Al0.01Ta0.1O3-δ, a material for temperature independent resistive and thermoelectric oxygen sensors


Bektas, Murat ; Stöcker, Thomas ; Hagen, Gunter ; Moos, Ralf:
On the defect chemistry of BaFe0.89Al0.01Ta0.1O3-δ, a material for temperature independent resistive and thermoelectric oxygen sensors.
In: Solid State Ionics. Bd. 316 (März 2018) . - S. 1-8.
ISSN 0167-2738
DOI: 10.1016/j.ssi.2017.12.017


Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Offizieller ProjekttitelProjekt-ID
Ohne AngabeMO1060/22-1

Projektfinanzierung: Deutsche Forschungsgemeinschaft


The Seebeck-coefficient (aka thermopower) is a less wide-spread parameter to determine constants for defect chemical models of semiconductor oxides. It is a measure for the charge carrier concentration. In contrast to the often investigated electrical conductivity, it has the benefit of being independent of the material geometry. BaFe0.7Ta0.3O3‐δ is known as a temperature-independent conductometric oxygen sensor material with perovskite crystal structure. The present work considers the Seebeck-coefficient as well as the electrical conductivity of bulk and thick-film BaFe0.89Al0.01Ta0.1O3‐ δ (BFAT10). Seebeck-coefficient and electrical conductivity were measured simultaneously between 600 and 950 °C under varying oxygen partial pressures from 10− 24 to 1 bar. BFAT10 thick films have been successfully deposited by the novel Aerosol Deposition Method (ADM) at room temperature on a special transducer. The electrical conductivity of thick-film sensors shows almost no temperature dependency but depends strongly on the oxygen partial pressure in the temperature range from 600 to 800 °C. An n-to-p-type transition was observed in the investigated oxygen partial pressure and temperature range. The defect parameters were derived from the experimental results and an initial defect model for BFAT10 is discussed. A hopping-type conduction mechanism is assumed due to the very low charge carrier mobility.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Funktionsmaterialien > Lehrstuhl Funktionsmaterialien - Univ.-Prof. Dr.-Ing. Ralf Moos
Profilfelder > Advanced Fields > Neue Materialien
Forschungseinrichtungen > Forschungszentren > Bayreuther Materialzentrum - BayMAT
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Funktionsmaterialien
Profilfelder > Advanced Fields
Forschungseinrichtungen > Forschungszentren
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 10 Jan 2018 07:57
Letzte Änderung: 10 Jan 2018 07:57
URI: https://eref.uni-bayreuth.de/id/eprint/41587