Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Radio-frequency-based determination of the oxygen and the NOx storage level of NOx storage catalysts

Title data

Walter, Stefanie ; Ruwisch, Lutz ; Göbel, Ulrich ; Hagen, Gunter ; Moos, Ralf:
Radio-frequency-based determination of the oxygen and the NOx storage level of NOx storage catalysts.
2018
Event: CAPOC11 - 11th International Congress on Catalysis and Automotive Pollution Control , Oct. 29 - 31, 2018 , Brussels, Belgium.
(Conference item: Conference , Poster )

Abstract in another language

In recent years, research on microwave-based catalyst state diagnosis for diesel engines has focused mainly on SCR systems. To increase the efficiency of exhaust aftertreatment systems, SCR catalysts can be combined with NOx storage catalysts (NSC). For optimum performance, the degree of loading of the storage components has to be monitored. Up to now, in commercial application this has been done indirectly by using mathematical models. In this paper the opportunities of a simple radio frequency (RF) based method for a direct determination are highlighted. Therefore, a commercial NSC was investigated between 210 and 390 °C. A linear dependence between the RF signals and the stored amount of NO was found. Furthermore, the RF parameters are not directly affect by the NO or oxygen concentration, but only indirectly by amount of stored NO, which depends on the NO concentration. By evaluating multiple signals, which are based on different material effects, a separate determination of the oxygen and NOx storage level could be realized.

Further data

Item Type: Conference item (Poster)
Refereed: Yes
Institutions of the University: Faculties > Faculty of Engineering Science
Faculties > Faculty of Engineering Science > Chair Functional Materials > Chair Functional Materials - Univ.-Prof. Dr.-Ing. Ralf Moos
Profile Fields > Advanced Fields > Advanced Materials
Research Institutions > Research Centres > Bayreuth Center for Material Science and Engineering - BayMAT
Research Institutions > Research Units > BERC - Bayreuth Engine Research Center
Faculties
Faculties > Faculty of Engineering Science > Chair Functional Materials
Profile Fields
Profile Fields > Advanced Fields
Research Institutions
Research Institutions > Research Centres
Research Institutions > Research Units
Result of work at the UBT: Yes
DDC Subjects: 600 Technology, medicine, applied sciences > 620 Engineering
Date Deposited: 07 Nov 2018 12:47
Last Modified: 07 Nov 2018 12:47
URI: https://eref.uni-bayreuth.de/id/eprint/46243