Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Oxidation state and dielectric properties of ceria-based catalysts by complementary microwave cavity perturbation and X-ray absorption spectroscopy measurements

Title data

Steiner, Carsten ; Gänzler, Andreas ; Zehentbauer, Melanie ; Hagen, Gunter ; Casapu, Maria ; Müller, Sabrina ; Grunwaldt, Jan-Dierk ; Moos, Ralf:
Oxidation state and dielectric properties of ceria-based catalysts by complementary microwave cavity perturbation and X-ray absorption spectroscopy measurements.
2018
Event: CAPOC11 - 11th International Congress on Catalysis and Automotive Pollution Control , Oct. 29 - 31, 2018 , Brussels, Belgium.
(Conference item: Conference , Poster )

Abstract in another language

The three-way catalytic converter (TWC) has become an integral part of the modern exhaust gas aftertreatment for gasoline engines. Some years ago, radio frequency technology was successfully tested for monitoring and controlling ceria based TWC oxygen storage by contactless measuring the dielectric catalyst properties inside a cavity resonator. Applying the cavity perturbation method, we present here results that have been specifically obtained for pure ceria, the oxygen storage component of three-way catalysts, and for differently prepared Pt-ceria model catalysts. The dielectric properties of the oxidized and (partially) reduced Pt-ceria and pure ceria powders were determined at 1.2 GHz between 250 °C and 550 °C. As the experiments show, the reduction of the material changes both, the polarization and also the occurring dielectric losses. The variations in the redox state of ceria were complementary probed by in situ X-ray absorption spectroscopicmeasurements conducted at the Ce L3-edge, which allowed to precisely determine the reduction and oxidation extent of ceria. The substantial improvement of the low-temperature reducibility of ceria in the presence of Pt was demonstrated. Time resolved data obtained during reducing/oxidizing cycles at 250 °C and 350 °C showed the faster and more pronounced reduction of ceria at higher temperature. Both methods proved to be valuable to provide insight into the oxygen storage and release process of ceria based materials, and capable to discriminate the impact of the noble metal or the ceria surface area in great detail, even under dynamic conditions, highly relevant for three-way catalysis.

Further data

Item Type: Conference item (Poster)
Refereed: Yes
Institutions of the University: Faculties > Faculty of Engineering Science
Faculties > Faculty of Engineering Science > Chair Functional Materials > Chair Functional Materials - Univ.-Prof. Dr.-Ing. Ralf Moos
Profile Fields > Advanced Fields > Advanced Materials
Research Institutions > Research Centres > Bayreuth Center for Material Science and Engineering - BayMAT
Research Institutions > Research Units > BERC - Bayreuth Engine Research Center
Faculties
Faculties > Faculty of Engineering Science > Chair Functional Materials
Profile Fields
Profile Fields > Advanced Fields
Research Institutions
Research Institutions > Research Centres
Research Institutions > Research Units
Result of work at the UBT: Yes
DDC Subjects: 600 Technology, medicine, applied sciences > 620 Engineering
Date Deposited: 07 Nov 2018 12:49
Last Modified: 07 Nov 2018 12:49
URI: https://eref.uni-bayreuth.de/id/eprint/46244